Salta al contenuto

Prin 2015

Likelihood-free Methods of Inference


STAFF

Roma Unit: Liseo, Arima, Grazian, Polettini, Tancredi

Padova Unit: VenturaCattelan, Kenne Pagui, Ruli, Salvan, Sartori

Udine Unit: Vidoni, Bellio, Fonseca, Giummole’, Pace

 

PUBLICATIONS OF THE STAFF

Liseo, Arima, Grazian, Polettini, Tancredi

VenturaCattelan, Kenne Pagui, Ruli, SalvanSartori

Vidoni, Bellio, Fonseca, Giummole’, Pace

 

REFERENCES

  1.  Allard, D., Comunian, A., Renard, P. (2012) Probability aggregation methods in geoscience. Mathematical Geosciences, 44, 545-581.
  2. Arima, S., Tardella, L. (2014) IDR for marginal likelihood in Bayesian phylogenetics: methods, algorithms and applications. Editors Ming-Hui Chen, Lynn Kuo, Paul O. Lewis, Chapman & Hall/CRC Mathematical and Computational Biology, 25-55.
  3. Barndorff-Nielsen, O.E., Cox, D.R. (1996) Prediction and asymptotics. Bernoulli, 2, 319-40.
  4. Basu A., Harris I.R., Hjort N.L., Jones M.C. (1998) Robust and efficient estimation by minimising a density power divergence. Biometrika, 85, 549-559.

  5. Boos, D.D., Stefanski, L.A. (2013) Essential Statistical Inference. Springer.

  6. Cabras, S., Castellanos, M. E., Ruli, E. (2015) Approximate Bayesian computation by modelling summary statistics in a quasi-likelihood framework. Bayesian Analysis, 10, 411-439.

  7. Cattelan, M., Sartori, N. (2015) Empirical and simulated adjustments of composite likelihood ratio statistics. Journal of Statistical Computation and Simulation. To appear.

  8. Cattelan, M., Varin, C. (2013) Hybrid pairwise likelihood analysis of animal behavior experiments. Biometrics, 69, 1002-1011.

  9. Corcuera, J.M., Giummolè, F. (1998) A characterization of monotone and regular divergences, The Annals of the Institute Statistical Mathematics, 50, 433-450.

  10. Corcuera, J.M., Giummolè, F. (1999) On the relationship between alpha-connections and the asymptotic properties of predictive distributions. Bernoulli, 5, 163-176.

  11. Corcuera, J.M., Giummolè, F. (2000) First order optimal predictive densities. In "Applications of Differential Geometry to Econometrics", Cambridge University Press. Eds: Marriott, P.,Salmon, M.

  12. Corcuera, J.M., Giummolè, F. (2006) Multivariate prediction. Bernoulli, 12, 157-168.

  13. Craiu, R., Sabeti, A. Wei, M. (2014) Additive Models for Conditional Copulas. STAT – The ISIS’s Journal for the Rapid Dissemination of Statistics Research, 3, 300–312.

  14. Dawid, A.P. (1986) Probability forecasting. In: Kotz, S., Johnson, N.L., Read, C.B. (Eds.), In Encyclopedia of Statistical Sciences. Wiley-Interscience, pp. 210–218.

  15. Dawid, A.P. (2007) The geometry of proper scoring rules. The Annals of the Institute Statistical Mathematics, 59, 77-93.

  16. Dawid, A.P., Musio, M. (2014) Theory and applications of proper scoring rules. Metron, 72, 169–183.
  17. Dawid, A.P., Musio, M. (2015) Bayesian model selection based on proper scoring rules. Bayesian Analysis, 10, 479-499.

  18. Dawid, P., Musio, M., Ventura, L. (2015) Minimum scoring rule inference. Scandinavian Journal of Statistics, to appear.

  19. Fog,  A. (2008) Calculation Methods for Wallenius’ Noncentral Hypergeometric Distribution. Communications in Statistics – Simulation and Computation, 37, 258-273.

  20. Forbes, P.G.M. (2012) Compatible weighted proper scoring rules. Biometrika, 99, 989-994.

  21. Friedman, J.H. (2001) Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29, 1189-1232.

  22. Genest, C. (1984). A characterization theorem for externally Bayesian groups. Annals of Statistics, 12, 1100-1105.

  23. Geweke, J., Amisano, G. (2011) Optimal prediction pools. Journal of Econometrics, 164, 130-141.

  24. Gneiting, T., Raftery, A.E. (2007) Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102, 359-378.

  25. Heyde, C.C. (1997) Quasi-likelihood and Its Application. a General Approach to Optimal Parameter Estimation. New York: Springer.

  26. Hyvärinen, A. (2005) Estimation of non-normalized statistical models by score matching. Journal of Machine Learning Research, 6, 695-709.

  27. Ibragimov, R., Lentzas, G. (2008) Copulas and Long Memory. Harvard Institute of Economic Research Discussion Paper No. 2160. Available at SSRN: http://ssrn.com/abstract=1185822

  28. Jose, V.R.R., Nau, R.F., Winkler, R.L. (2009) Scoring rules, generalized entropy, and utility maximization. Operations Research, 56, 1146-1157.

  29. Kalbfleisch, J.K., Lawless (1985) The analysis of panel data under a Markov assumption. Journal of the American Statistical Association, 80, 863-871.

  30. Kascha, C., Ravazzolo, F. (2010) Combining inflation density forecasts. Journal of Forecasting, 29, 231-250.

  31. Kenne Pagui, E. K., Salvan, A., Sartori, N. (2014) Combined composite likelihood. The Canadian Journal of Statistics, 42, 525-543.

  32. Kenne Pagui, E. K., Salvan, A., Sartori, N. (2015) On full efficiency of the maximum composite likelihood estimator. Statistics and Probability Letters, 97, 120-124.

  33. Komaki, F. (1996) On asymptotic properties of predictive distributions. Biometrika, 83, 299-313.

  34. Lazar, N.A. (2003) Bayesian empirical likelihood. Biometrika, 90, 319-326.

  35. Lindsay, B. G. (1988) Composite likelihood methods. Contemporary Mathematics, 80, 221-240.

  36. Marin, J.M., Pudlo, P., Robert, C. P., Ryder, R. J. (2012) Approximate Bayesian computational methods. Statistics and Computing, 22, 1167-1180.

  1. Marin, J. M., Pillai, N. S., Robert, C.P., Rousseau, J. (2014) Relevant statistics for Bayesian model choice. Journal of the Royal Statistical Society B, 76, 833-859.

  2. Ormerod, J.T., Wand, M. P. (2010) Explaining variational approximations. The American Statistician, 64, 140-153.

  3. Pace, L., Salvan, A., Sartori, N. (2011) Adjusting composite likelihood ratio statistics. Statistica Sinica, 21, 129-148.

  4. Pace, L., Salvan, A., Sartori, N. (2015) Inference from pseudo likelihoods with plug-in estimates. Australian and New Zealand Journal of Statistics, 57, 347-361.

  5. Pan, W. (2001) Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics, 57, 120-125.

  6. Parry M., Dawid A.P., Lauritzen S.L. (2012) Proper local scoring rules. The Annals of Statistics, 40, 561–592.

  7. Pauli, F., Racugno, W., Ventura, L. (2011) Bayesian composite marginal likelihoods. Statistica Sinica, 21, 149-164.
  1. Reid, N. (2013) Aspects of likelihood inference. Bernoulli, 19, 1404-1418.

  2. Ruli, E., Sartori, N., Ventura, L. (2015) Approximate Bayesian Computation with composite score functions. Statistics and Computing, to appear.

  3. Shun, Z., McCullagh, P. (1995) Laplace approximation of high dimensional integrals. Journal of the Royal Statistical Society B, 57, 749–760.

  4. Smith, E.L., Stephenson, A.G. (2009) An extended Gaussian max-stable process model for spatial extremes. Journal of Statistical Planning and Inference, 139, 1266-1275.

  5. Titman, A.C., Sharples, L.D. (2010). Semi Markov models with phase-type sojourn distributions. Biometrics, 66, 742-752.

  6. Titman, A.C. (2014) Estimating parametric semi Markov models from panel data using phase type approximations. Statistics and Computing, 24, 155-164.

  7. Varin, C., Reid, N., Firth, D., (2011) An overview of composite likelihood methods. Statistica Sinica, 21, 5–42.

  8. Vidoni, P. (1995) A simple predictive density based on the p*-formula. Biometrika, 82, 855-863.

  9. Vidoni, P. (1998) A note on modified estimative prediction limits and distributions. Biometrika, 85, 949-953.

 

 

Dipartimento di Scienze Statistiche | Università degli studi di Padova