Likelihood-free Methods of Inference
STAFF
Roma Unit: Liseo, Arima, Grazian, Polettini, Tancredi
Padova Unit: Ventura, Cattelan, Kenne Pagui, Ruli, Salvan, Sartori
Udine Unit: Vidoni, Bellio, Fonseca, Giummole’, Pace
PUBLICATIONS OF THE STAFF
Liseo, Arima, Grazian, Polettini, Tancredi
Ventura, Cattelan, Kenne Pagui, Ruli, Salvan, Sartori
Vidoni, Bellio, Fonseca, Giummole’, Pace
REFERENCES
- Allard, D., Comunian, A., Renard, P. (2012) Probability aggregation methods in geoscience. Mathematical Geosciences, 44, 545-581.
- Arima, S., Tardella, L. (2014) IDR for marginal likelihood in Bayesian phylogenetics: methods, algorithms and applications. Editors Ming-Hui Chen, Lynn Kuo, Paul O. Lewis, Chapman & Hall/CRC Mathematical and Computational Biology, 25-55.
- Barndorff-Nielsen, O.E., Cox, D.R. (1996) Prediction and asymptotics. Bernoulli, 2, 319-40.
-
Basu A., Harris I.R., Hjort N.L., Jones M.C. (1998) Robust and efficient estimation by minimising a density power divergence. Biometrika, 85, 549-559.
-
Boos, D.D., Stefanski, L.A. (2013) Essential Statistical Inference. Springer.
-
Cabras, S., Castellanos, M. E., Ruli, E. (2015) Approximate Bayesian computation by modelling summary statistics in a quasi-likelihood framework. Bayesian Analysis, 10, 411-439.
-
Cattelan, M., Sartori, N. (2015) Empirical and simulated adjustments of composite likelihood ratio statistics. Journal of Statistical Computation and Simulation. To appear.
-
Cattelan, M., Varin, C. (2013) Hybrid pairwise likelihood analysis of animal behavior experiments. Biometrics, 69, 1002-1011.
-
Corcuera, J.M., Giummolè, F. (1998) A characterization of monotone and regular divergences, The Annals of the Institute Statistical Mathematics, 50, 433-450.
-
Corcuera, J.M., Giummolè, F. (1999) On the relationship between alpha-connections and the asymptotic properties of predictive distributions. Bernoulli, 5, 163-176.
-
Corcuera, J.M., Giummolè, F. (2000) First order optimal predictive densities. In "Applications of Differential Geometry to Econometrics", Cambridge University Press. Eds: Marriott, P.,Salmon, M.
-
Corcuera, J.M., Giummolè, F. (2006) Multivariate prediction. Bernoulli, 12, 157-168.
-
Craiu, R., Sabeti, A. Wei, M. (2014) Additive Models for Conditional Copulas. STAT – The ISIS’s Journal for the Rapid Dissemination of Statistics Research, 3, 300–312.
-
Dawid, A.P. (1986) Probability forecasting. In: Kotz, S., Johnson, N.L., Read, C.B. (Eds.), In Encyclopedia of Statistical Sciences. Wiley-Interscience, pp. 210–218.
-
Dawid, A.P. (2007) The geometry of proper scoring rules. The Annals of the Institute Statistical Mathematics, 59, 77-93.
- Dawid, A.P., Musio, M. (2014) Theory and applications of proper scoring rules. Metron, 72, 169–183.
-
Dawid, A.P., Musio, M. (2015) Bayesian model selection based on proper scoring rules. Bayesian Analysis, 10, 479-499.
-
Dawid, P., Musio, M., Ventura, L. (2015) Minimum scoring rule inference. Scandinavian Journal of Statistics, to appear.
-
Fog, A. (2008) Calculation Methods for Wallenius’ Noncentral Hypergeometric Distribution. Communications in Statistics – Simulation and Computation, 37, 258-273.
-
Forbes, P.G.M. (2012) Compatible weighted proper scoring rules. Biometrika, 99, 989-994.
-
Friedman, J.H. (2001) Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29, 1189-1232.
-
Genest, C. (1984). A characterization theorem for externally Bayesian groups. Annals of Statistics, 12, 1100-1105.
-
Geweke, J., Amisano, G. (2011) Optimal prediction pools. Journal of Econometrics, 164, 130-141.
-
Gneiting, T., Raftery, A.E. (2007) Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102, 359-378.
-
Heyde, C.C. (1997) Quasi-likelihood and Its Application. a General Approach to Optimal Parameter Estimation. New York: Springer.
-
Hyvärinen, A. (2005) Estimation of non-normalized statistical models by score matching. Journal of Machine Learning Research, 6, 695-709.
-
Ibragimov, R., Lentzas, G. (2008) Copulas and Long Memory. Harvard Institute of Economic Research Discussion Paper No. 2160. Available at SSRN: http://ssrn.com/abstract=1185822
-
Jose, V.R.R., Nau, R.F., Winkler, R.L. (2009) Scoring rules, generalized entropy, and utility maximization. Operations Research, 56, 1146-1157.
-
Kalbfleisch, J.K., Lawless (1985) The analysis of panel data under a Markov assumption. Journal of the American Statistical Association, 80, 863-871.
-
Kascha, C., Ravazzolo, F. (2010) Combining inflation density forecasts. Journal of Forecasting, 29, 231-250.
-
Kenne Pagui, E. K., Salvan, A., Sartori, N. (2014) Combined composite likelihood. The Canadian Journal of Statistics, 42, 525-543.
-
Kenne Pagui, E. K., Salvan, A., Sartori, N. (2015) On full efficiency of the maximum composite likelihood estimator. Statistics and Probability Letters, 97, 120-124.
-
Komaki, F. (1996) On asymptotic properties of predictive distributions. Biometrika, 83, 299-313.
-
Lazar, N.A. (2003) Bayesian empirical likelihood. Biometrika, 90, 319-326.
-
Lindsay, B. G. (1988) Composite likelihood methods. Contemporary Mathematics, 80, 221-240.
-
Marin, J.M., Pudlo, P., Robert, C. P., Ryder, R. J. (2012) Approximate Bayesian computational methods. Statistics and Computing, 22, 1167-1180.
-
Marin, J. M., Pillai, N. S., Robert, C.P., Rousseau, J. (2014) Relevant statistics for Bayesian model choice. Journal of the Royal Statistical Society B, 76, 833-859.
-
Ormerod, J.T., Wand, M. P. (2010) Explaining variational approximations. The American Statistician, 64, 140-153.
-
Pace, L., Salvan, A., Sartori, N. (2011) Adjusting composite likelihood ratio statistics. Statistica Sinica, 21, 129-148.
-
Pace, L., Salvan, A., Sartori, N. (2015) Inference from pseudo likelihoods with plug-in estimates. Australian and New Zealand Journal of Statistics, 57, 347-361.
-
Pan, W. (2001) Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics, 57, 120-125.
-
Parry M., Dawid A.P., Lauritzen S.L. (2012) Proper local scoring rules. The Annals of Statistics, 40, 561–592.
- Pauli, F., Racugno, W., Ventura, L. (2011) Bayesian composite marginal likelihoods. Statistica Sinica, 21, 149-164.
-
Reid, N. (2013) Aspects of likelihood inference. Bernoulli, 19, 1404-1418.
-
Ruli, E., Sartori, N., Ventura, L. (2015) Approximate Bayesian Computation with composite score functions. Statistics and Computing, to appear.
-
Shun, Z., McCullagh, P. (1995) Laplace approximation of high dimensional integrals. Journal of the Royal Statistical Society B, 57, 749–760.
-
Smith, E.L., Stephenson, A.G. (2009) An extended Gaussian max-stable process model for spatial extremes. Journal of Statistical Planning and Inference, 139, 1266-1275.
-
Titman, A.C., Sharples, L.D. (2010). Semi Markov models with phase-type sojourn distributions. Biometrics, 66, 742-752.
-
Titman, A.C. (2014) Estimating parametric semi Markov models from panel data using phase type approximations. Statistics and Computing, 24, 155-164.
-
Varin, C., Reid, N., Firth, D., (2011) An overview of composite likelihood methods. Statistica Sinica, 21, 5–42.
-
Vidoni, P. (1995) A simple predictive density based on the p*-formula. Biometrika, 82, 855-863.
-
Vidoni, P. (1998) A note on modified estimative prediction limits and distributions. Biometrika, 85, 949-953.