Overall Objective Priors

Jim Berger, Jose Bernardo and Dongchu Sun
Duke University, University of Valencia and University of Missouri

Recent advances in statistical inference: theory and case studies

University of Padova

March 21-23, 2013
Outline

- Background
- Previous approaches to development of an overall prior
- New approaches to development of an overall prior
- Specifics of the reference distance approach
- Specifics of the prior modeling approach
- Summary
Background

- Objective Bayesian methods have priors defined by the model (or model structure).
- In models with a single unknown parameter, the acclaimed objective prior is the Jeffreys-rule prior (more generally, the reference prior).
- In multiparameter models, the optimal objective (e.g., reference or matching) prior depends on the quantity of interest, e.g., the parameter concerning which inference is being performed.
- But often one needs a single overall prior
 - for prediction
 - for decision analysis
 - when the user might consider non-standard quantities of interest
 - for computational simplicity
 - for sociological reasons
Example: *Bivariate Normal Distribution*, with mean parameters μ_1 and μ_2, standard deviations σ_1 and σ_2, and correlation ρ.

Berger and Sun (AOS2008) studied priors that had been considered for 21 quantities of interest (original parameters and derived ones such as μ_1/σ_1).

- An optimal prior for each quantity of interest was suggested.
- An overall prior was also suggested:
 - The primary criterion used to judge candidate overall priors was reasonable frequentist coverage properties of resulting credible intervals for the most important quantities of interest.
 - The prior (from Lindley and Bayarri)
 \[
 \pi^O(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{\sigma_1 \sigma_2 (1 - \rho^2)}
 \]
 was the suggested overall prior.
Previous Approaches to Development of an Overall Prior

- I. Group-invariance priors
- II. Constant or vague proper priors
- III. The Jeffreys-rule prior

Notation:

Data: \(x \)

Unknown model parameters: \(\theta \)

Data density: \(p(x \mid \theta) \)

Prior density: \(\pi(\theta) \)

Marginal (predictive) density: \(p(x) = \int p(x \mid \theta) \pi(\theta) \, d\theta \)

Posterior density: \(\pi(\theta \mid x) = p(x \mid \theta) \pi(\theta)/p(x) \)
I. **Group-invariance priors:** If $p(x | \theta)$ has a group invariance structure, then the recommended objective prior is typically the right-Haar prior.

- Often works well for all parameters that define the invariance structure.
 Example: If the sampling model is $N(x_i | \mu, \sigma)$, the right-Haar prior is $\pi(\mu, \sigma) = 1/\sigma$, and this is fine for either μ or σ (yielding the usual objective posteriors).

- But it may be poor for other parameters.
 Example: For the bivariate normal problem, one right-Haar prior is $\pi_1(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = 1/[\sigma_1^2(1 - \rho^2)]$, which is fine for μ_1, σ_1 and ρ, but leads to problematical posteriors for μ_2 and σ_2 (Berger and Sun, 2008).

- And it may not be unique.
 Example: For the bivariate normal problem, another right-Haar prior is $\pi_2(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = 1/[\sigma_2^2(1 - \rho^2)]$.

The situation can be even worse if the right-Haar prior is used for derived parameters.

Example: *Multi-normal means:* Let x_i be independent normal with mean μ_i and variance 1, for $i = 1 \cdots, m$.

- The right-Haar (actually Haar) prior for $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_m)$ is $\pi(\boldsymbol{\mu}) = 1$.
- It results in a sensible $N(\mu_i \mid x_i, 1)$ posterior for each individual μ_i.
- But it is terrible for $\theta = \frac{1}{m} |\boldsymbol{\mu}|^2 = \frac{1}{m} \sum_{i=1}^{m} \mu_i^2$ (Stein).
 * The posterior mean of θ is $[1 + \frac{1}{m} \sum_{i=1}^{m} x_i^2]$;
 * this converges to $[\theta + 2]$ as $m \to \infty$;
 * indeed, the posterior concentrates sharply around $[\theta + 2]$ and so is badly *inconsistent.*
II. **Constant or vague proper priors** are often used as the overall prior.

- The problems of a constant prior are well-documented, including
 - lack of invariance to transformation (the original problem with Laplace’s ‘inverse probability’),
 - frequent posterior impropriety (as in the first full Bayesian analyses of Gaussian spatial models with an exponential correlation structure, when constant priors were used for the range parameter),
 - and possible terrible performance (as in the previous example).

- Vague proper priors (such as a constant prior over a large compact set)
 - are at best equivalent to use of a constant prior (and so inherit the flaws of a constant prior);
 - can be worse, in that they can hide problems such as a lack of posterior propriety.
III. The Jeffreys-rule prior: If the data model density is \(p(x \mid \theta) \) the Jeffreys-rule prior for the unknown \(\theta = \{\theta_1, \ldots, \theta_k\} \) has the form

\[
|I(\theta)|^{1/2} d\theta_1 \ldots d\theta_k
\]

where \(I(\theta) \) is the \(k \times k \) Fisher information matrix with \((i, j)\) element

\[
I(\theta)_{ij} = \mathbb{E}_{x \mid \theta} \left[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log p(x \mid \theta) \right].
\]

This is the optimal objective prior (from many perspectives) for (regular) one-parameter models, but has problems for multi-parameter models:

- The right-Haar prior in the earlier multi-normal mean problem is also the Jeffreys-rule prior there, and yielded inconsistent estimators. (It also yields inconsistent estimators in the Neyman-Scott problem.)

- For the \(\text{N}(x_i \mid \mu, \sigma) \) model, the Jeffreys-rule prior is \(\pi(\mu, \sigma) = 1/\sigma^2 \), which results in posterior inferences for \(\mu \) and \(\sigma \) that have ‘degrees of freedom’ equal to \(n \), not the correct \(n - 1 \).
For the bivariate normal example, the Jeffreys-rule prior is $1/\left[\sigma_1^2\sigma_2^2(1 - \rho^2)^2\right]$;

- it yields the natural marginal posteriors for the means and standard deviations,

- but results in quite inferior objective posteriors for ρ and various derived parameters (Berger and Sun, 2008)).

- in p-variate normal problems, the Jeffreys-rule prior for a covariance matrix can be very bad (Stein, Yang and Berger, 1992).

- It can overwhelm the data:

Example: Multinomial distribution: Suppose $\mathbf{x} = (x_1, \ldots, x_m)$ is multinomial $\text{Mu}(\mathbf{x} | n; \theta_1, \ldots, \theta_m)$, where $\sum_{i=1}^{m} \theta_i = 1$. If the sample size n is small relative to the number of classes m, we have a large sparse table. The Jeffreys-rule prior, $\pi(\theta_1, \ldots, \theta_m) \propto \prod_{i=1}^{m} \theta_i^{-1/2}$ is a proper prior that can overwhelm the data.
• Suppose \(n = 3 \) and \(m = 1000 \), with \(x_{240} = 2 \), \(x_{876} = 1 \), other \(x_i = 0 \).

• The posterior means resulting from the Jeffreys prior are

\[
E[\theta_i | \mathbf{x}] = \frac{x_i + 1/2}{\sum_{i=1}^{m} (x_i + 1/2)} = \frac{x_i + 1/2}{n + m/2} = \frac{x_i + 1/2}{503},
\]

so \(E[\theta_{240} | \mathbf{x}] = \frac{2.5}{503}, E[\theta_{876} | \mathbf{x}] = \frac{1.5}{503}, E[\theta_i | \mathbf{x}] = \frac{0.5}{503} \) otherwise.

• Thus cells 240 and 876 only have total posterior probability \(\frac{4}{503} = 0.008 \), even though all 3 observations are in these cells.

• The problem is that the Jeffreys-rule prior added 1/2 to all the zero cells, making them much more important than the cells with data!

• Note that the uniform prior on the simplex is even worse, since it adds 1 to each cell. The prior \(\prod_i \theta_i^{-1} \) adds zero to each cell, but the posterior is improper unless all cells have nonzero entries.

For specific problems there have been improvements such as the “independence Jeffreys-rule prior,” but such prescriptions have been adhoc and have not lead to a general alternative definition.
New Approaches to Development of an Overall Prior

• A. The reference distance approach

• B. The hierarchical approach
 – B1. Prior averaging
 – B2. Prior modeling approach
A. The Reference Distance Approach: Choose a prior that yields marginal posteriors for all parameters that are close to the reference posteriors for the parameters in an average distance sense (to be specified).

Example: Multinomial example (continued):

- The reference prior, when θ_i is of interest, differs for each θ_i.
- It results in a Beta reference posterior $\text{Be}(\theta_i \mid x_i + \frac{1}{2}, n - x_i + \frac{1}{2})$.
- Goal: identify a single joint prior for θ whose marginal posteriors could be expected to be close to each of the reference posteriors just described, in some average sense.
- Consider, as an overall prior, the Dirichlet $\text{Di}(\theta \mid a, \ldots, a)$ distribution, having density proportional to $\prod_i \theta_i^{(a-1)}$.
 - The marginal posterior for θ_i is then $\text{Be}(\theta_i \mid x_i + a, n - x_i + (m - 1)a)$.
 - The goal is to choose a so these are, in any average sense, close to the reference posteriors $\text{Be}(\theta_i \mid x_i + \frac{1}{2}, n - x_i + \frac{1}{2})$.
– The recommended choice is (approximately) $a = 1/m$:

* This prior adds only $1/m = 0.001$ to each cell in the earlier example;

* Thus

$$E[\theta_i | \mathbf{x}] = \frac{x_i + 1/m}{\sum_{i=1}^{m}(x_i + 1/m)} = \frac{x_i + 1/m}{n + 1} = \frac{x_i + 0.001}{4},$$

so that $E[\theta_{240} | \mathbf{x}] \approx 0.5$, $E[\theta_{876} | \mathbf{x}] \approx 0.25$, and $E[\theta_i | \mathbf{x}] \approx \frac{1}{4000}$ otherwise, all sensible (recall $x_{240} = 2$, $x_{876} = 1$, other $x_i = 0$).
A. The Hierarchical approach: Utilize hierarchical modeling to transfer the reference prior problem to a ‘higher level’.

A1. Prior Averaging: Starting with a collection of reference (or other) priors \(\{\pi_i(\theta), i = 1, \ldots, k\} \) for differing parameters or quantities of interest, use the average prior, such as

\[
\pi(\theta) = \sum_{i=1}^{k} \pi_i(\theta).
\]

This is hierarchical as it coincides with giving each prior an equal prior probability of being correct, and averaging out over this hyperprior.
Example: Bivariate Normal example (continued): Faced with the two right-Haar priors, a natural prior to consider is their average, given by

\[
\pi(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\sigma_1^2(1 - \rho^2)} + \frac{1}{2\sigma_2^2(1 - \rho^2)}.
\]

- It is shown in Sun and Berger (2007) that this prior is worse than either right-Haar prior alone, suggesting that averaging improper priors is not a good idea.

- Interestingly, the geometric average of these two priors is the recommended overall prior for the bivariate normal

\[
\pi^O(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = 1/[\sigma_1\sigma_2(1 - \rho^2)],
\]

but justification for geometric averaging is currently lacking.
Another problem with prior averaging is that there can be too many reference priors to average.

Example: Multinomial example (continued): The reference prior $\pi_i(\theta)$, when θ_i is the parameter of interest, depends on the parameter ordering chosen in the derivation (e.g. $\{\theta_i, \theta_1, \theta_2, \ldots, \theta_m\}$).

- All choices lead to the same marginal reference posterior $\text{Be}(\theta_i \mid x_i + \frac{1}{2}, n - x_i + \frac{1}{2})$.
- In constructing an overall prior by prior averaging, each of the orderings would have to be considered.
- There are $m!$ reference priors to be averaged.

Conclusion: For the reasons indicated above, we do not recommend the prior averaging approach.
A2. Prior Modeling Approach: In this approach one

- Chooses a class of *proper* priors $\pi(\theta | a)$ that reflects the desired structure of the problem.

- Forms the marginal likelihood $p(x | a) = \int p(x | a)\pi(\theta | a)\,d\theta$.

- Finds the reference prior, $\pi^R(a)$, for a in this marginal model.

- Thus the overall prior becomes

$$\pi^O(\theta) = \int \pi(\theta | a)\pi^R(a)\,da,$$

although computation is typically easier in the hierarchical formulation.
Example: *Multinomial (continued):*

- The Dirichlet $\text{Di}(\theta \mid a, \ldots, a)$ class of priors is natural, reflecting the desire to treat all the θ_i similarly.

- The marginal model is then

$$p(x \mid a) = \int \left(\begin{array}{c} n \\ x_1 \ldots x_m \end{array} \right) \left(\prod_{i=1}^{m} \theta_i^{x_i} \right) \frac{\Gamma(m a)}{\Gamma(a)^m} \prod_{i=1}^{m} \theta_i^{a-1} d\theta$$

$$= \left(\begin{array}{c} n \\ x_1 \ldots x_m \end{array} \right) \frac{\Gamma(m a)}{\Gamma(a)^m} \frac{\prod_{i=1}^{m} \Gamma(x_i + a)}{\Gamma(n + m a)} .$$

- The reference prior for $\pi^R(a)$ would just be the Jeffreys-rule prior for this marginal model, and is given later.

- The overall prior for θ is

$$\pi(\theta) = \int \text{Di}(\theta \mid a, \ldots, a) \pi^R(a) da .$$
Specifics of the Reference Distance Approach
Defining a distance (divergence): *Intrinsic discrepancy* (Bernardo and Rueda, 2002; Bernardo, 2005, 2001)

Definition 1 The intrinsic discrepancy $\delta \{p_1, p_2\}$ between two probability distributions for the random vector ψ with densities $p_1(\psi) \in \Psi_1$ and $p_2(\psi) \in \Psi_2$ is

$$
\delta \{p_1, p_2\} = \min \left\{ \int_{\Psi_1} p_1(\psi) \log \frac{p_1(\psi)}{p_2(\psi)} \, d\psi, \int_{\Psi_2} p_2(\psi) \log \frac{p_2(\psi)}{p_1(\psi)} \, d\psi \right\}
$$

assuming that at least one of the integrals exists.

The (non-symmetric) (Kullback-Leibler) logarithmic divergence, in scenarios where there is a ‘true’ distribution $p_2(\psi)$,

$$
\kappa \{p_1 \mid p_2\} = \int_{\Psi_2} p_2(\psi) \log \frac{p_2(\psi)}{p_1(\psi)} \, d\psi,
$$

is another reasonable choice (and is usually equivalent to the intrinsic discrepancy).
The exact solution scenario: If a prior $\pi^O(\theta)$ yields marginal posteriors that are equal to the reference posteriors for each of the quantities of interest, then the resulting intrinsic discrepancies are zero and $\pi^O(\theta)$ is a natural choice for the overall prior.

Example: Univariate normal distribution: For the $N(x_i \mid \mu, \sigma)$ distribution,

- suppose μ and σ are the quantities of interest;
- $\pi^O(\mu, \sigma) = \sigma^{-1}$ is the reference prior when either μ or σ is the quantity of interest;
- hence π^O is an optimal overall prior.

Suppose, in addition to μ and σ, the centrality parameter $\theta = \mu/\sigma$ is also a quantity of interest.

- The reference prior for θ is (Bernardo, 1979)
 \[\pi_\theta(\theta, \sigma) = (1 + \frac{1}{2} \theta^2)^{-1/2} \sigma^{-1}; \]
- this yields different marginal posteriors than does $\pi^O(\mu, \sigma) = \sigma^{-1}$;
- hence we would not have an exact solution.
General (Proper) Situation:

- Suppose the model is $p(x \mid \omega)$ and the quantities of interest are $\{\theta_1, \ldots, \theta_m\}$, with proper reference priors $\{\pi_i^R(\omega)\}_{i=1}^m$.
- $\{\pi_i^R(\theta_i \mid x)\}_{i=1}^m$ are the corresponding marginal reference posteriors.
- $p_i^R(x) = \int_\Omega p(x \mid \omega) \pi_i^R(\omega) d\omega$ are the corresponding (proper) marginal densities or prior predictives.
- $\{w_i\}_{i=1}^m$ are weights giving the importance of each quantity of interest.
- A family of priors $\mathcal{F} = \{\pi(\omega \mid a), a \in \mathcal{A}\}$ is considered.

The best overall prior within \mathcal{F} is defined to be that which minimizes, over $a \in \mathcal{A}$, the average expected intrinsic loss

$$d(a) = \sum_{i=1}^m w_i \int_{\mathcal{X}} \delta\{\pi_i^R(\cdot \mid x), \pi_i(\cdot \mid x, a)\} p_i^R(x) dx.$$

Big Issue: When the reference priors are not proper (the usual case), there is no assurance that $d(a)$ is finite. There is no clear way to proceed otherwise, so we are studying if $d(a)$ is often finite in the improper case.
Example: *Multinomial model:* Consider the multinomial model with m cells and parameters $\{\theta_1, \ldots, \theta_m\}$, with $\sum_{i=1}^{m} \theta_i = 1$. We seek to find the $\text{Di}(\theta | a, \ldots, a)$ prior that minimizes the average expected intrinsic loss.

- The reference posterior for each of the θ_i’s is $\text{Be}(\theta_i | x_i + \frac{1}{2}, n - x_i + \frac{1}{2})$.
- The marginal posterior of θ_i for the Dirchlet prior is $\text{Be}(\theta_i | x_i + a, n - x_i + (m - 1)a)$.
- The intrinsic discrepancy between these marginal posteriors is

$$
\delta_i \{a | x, m, n\} = \delta_{\text{Be}} \{x_i + \frac{1}{2}, n - x_i + \frac{1}{2}, x_i + a, n - x_i + (m - 1)a\},
$$

$$
\delta_{\text{Be}} \{a_1, \beta_1, a_2, \beta_2\} = \min \{\kappa_{\text{Be}} \{a_2, \beta_2 | a_1, \beta_1\}, \kappa_{\text{Be}} \{a_1, \beta_1 | a_2, \beta_2\}\},
$$

$$
\kappa_{\text{Be}} \{a_2, \beta_2 | a_1, \beta_1\} = \int_0^1 \text{Be}(\theta_i | a_1, \beta_1) \log \left[\frac{\text{Be}(\theta_i | a_1, \beta_1)}{\text{Be}(\theta_i | a_2, \beta_2)} \right] d\theta_i
$$

$$
= \log \left[\frac{\Gamma(a_1 + \beta_1)}{\Gamma(a_2 + \beta_2)} \frac{\Gamma(a_2)}{\Gamma(a_1)} \Gamma(\beta_2) \right]
$$

$$
+ (a_1 - a_2)\psi(a_1) + (\beta_1 - \beta_2)\psi(\beta_1) - ((a_1 + \beta_1) - (a_2 + \beta_2))\psi(a_1 + \beta_1),
$$

and $\psi(\cdot)$ is the digamma function.
The discrepancy $\delta_i\{a \mid x_i, m, n\}$ between the two posteriors of θ_i only depends on the data through x_i and the reference predictive for x_i is

$$p(x_i \mid n) = \int_0^1 \text{Bi}(x_i \mid n, \theta_i) \text{Be}(\theta_i \mid 1/2, 1/2) \, d\theta_i = \frac{1}{\pi} \frac{\Gamma(x_i + \frac{1}{2}) \Gamma(n - x_i + \frac{1}{2})}{\Gamma(x_i + 1) \Gamma(n - x_i + 1)},$$

- because the sampling distribution of x_i is $\text{Bi}(x_i \mid n, \theta_i)$,
- and the marginal reference prior for θ_i is $\pi_i(\theta_i) = \text{Be}(\theta_i \mid 1/2, 1/2)$.

Noting that each θ_i yields the same expected loss, the average expected intrinsic loss is

$$d(a \mid m, n) = \sum_{x=0}^{n} \delta\{a \mid x, m, n\} p(x \mid n).$$
Figure 1: Expected intrinsic losses, of using a Dirichlet prior with parameter \(\{a, \ldots, a\}\) in a multinomial model with \(m\) cells, for sample sizes 5, 10, 25, 100 and 500. Left panel, \(m = 10\); right panel, \(m = 100\). In both cases, the optimal value for all sample sizes is \(a^* \approx 1/m\). Exact values for \(n = 25\) are 0.091 and 0.0085.)
Specifics of the Prior Modeling Approach

- Multinomial Example
- Bivariate Normal Example
Example: *Multinomial (continued):*

- The Dirichlet $\text{Di}(\theta | a, \ldots, a)$ class of priors is natural, reflecting the desire to treat all the θ_i similarly.

- The marginal model is then

$$p(\mathbf{x} | a) = \int \left(\begin{array}{c} n \\ x_1 \ldots x_m \end{array} \right) \left(\prod_{i=1}^{m} \theta_i^{x_i} \right) \frac{\Gamma(m a)}{\Gamma(a)^m} \prod_{i=1}^{m} \theta_i^{a-1} d\theta$$

$$= \left(\begin{array}{c} n \\ x_1 \ldots x_m \end{array} \right) \frac{\Gamma(m a)}{\Gamma(a)^m} \prod_{i=1}^{m} \frac{\Gamma(x_i + a)}{\Gamma(n + m a)} .$$

- The reference prior for $\pi^R(a)$ would just be the Jeffreys-rule prior for this marginal model, and is given later.

- The overall prior for θ is

$$\pi(\theta) = \int \text{Di}(\theta | a, \ldots, a) \pi^R(a) da .$$
Derivation of $\pi^R(a)$: $p(x \mid a)$ is a regular one-parameter model, so the reference prior is the Jeffreys-rule prior.

- The marginal (predictive) density of any of the x_i's is

$$p_1(x_i \mid a, m, n) = \binom{n}{x_i} \frac{\Gamma(x_i + a) \Gamma(n - x_i + (m - 1)a) \Gamma(m a)}{\Gamma(a) \Gamma((m - 1)a) \Gamma(n + m a)}.$$

- Computation yields

$$\pi^R(a \mid m, n) \propto \left[\sum_{j=0}^{n-1} \left(\frac{Q(j \mid a, m, n)}{(a + j)^2} - \frac{m}{(m a + j)^2} \right) \right]^{1/2},$$

where $Q(j \mid a, m, n) = \sum_{l=j+1}^n p_1(l \mid a, m, n), \quad j = 0, \ldots, n - 1.$
\begin{itemize}
 \item $\pi^R(a)$ can be shown to be a proper prior. Why did that happen?

 It can be shown that
 \[
p(x \mid a) = \begin{cases}
 O(a^{r-1}), & \text{as } a \to 0, \\
 \binom{n}{x} m^{-n}, & \text{as } a \to \infty,
 \end{cases}
 \]

 where r is the number of nonzero x_i. Thus the likelihood is constant at \(\infty\), so the prior must be proper at infinity for the posterior to exist.

 \item It can be shown that, for sparse tables, where m/n is relatively large, the reference prior is well approximated by the proper prior
 \[
 \pi^*(a \mid m, n) = \frac{1}{2} \frac{n}{m} a^{-1/2} \left(a + \frac{n}{m} \right)^{-3/2}.
 \]
\end{itemize}
Figure 2: Reference priors $\pi^R(\alpha \mid m, n)$ (solid lines) and its approximations (dotted lines) for $(m = 150, n = 10)$ (upper curve) and for $(m = 500, n = 10)$ (lower curve).
Computation with the hierarchical reference prior:

1. The obvious *MCMC sampler* is:

 Step 1. Use a Metropolis Hastings move to sample from the marginal posterior $\pi^R(a \mid x) \propto \pi^R(a) p(x \mid a)$.

 Step 2. Given a, sample from the usual beta posterior $\pi(\theta \mid a, x)$.

2. The *empirical Bayes approximation* is to fix a at it’s posterior mode \hat{a}^R, which exists and is nonzero if $r \geq 2$.

 Using the ordinary empirical Bayes estimate from maximizing $p(x \mid a)$ is problematical, since the likelihood does not go to zero at ∞. For instance, if all $x_i = 1$, $p(x \mid a)$ has a likelihood increasing in a.
Asymptotic posterior mode as \(m \) and \(n \) go to \(\infty \), but \(n/m \to 0 \):

\[
\hat{a} = \begin{cases}
\frac{(r-1.5)}{m \log n} & \text{if } \frac{r}{n} \to 0, \\
\frac{c^* n}{m} & \text{if } \frac{r}{n} \to c < 1, \\
\frac{n^2}{2m(n-r)} & \text{if } \frac{r}{n} \to 1 \text{ and } \frac{(n-r)^2}{n} \to \infty.
\end{cases}
\]

where \(r \) is the number of nonzero \(x_i \) and \(c^* \) is the solution to \(c^* \log(1 + \frac{1}{c^*}) = c \).

- While \(\hat{a} \) is of \(O\left(\frac{1}{m}\right) \), it also depends on \(r \) and \(n \).
- For instance, suppose \(r = n/2 \) (i.e., there are \(n/2 \) nonzero entries); then \(\hat{a} = 0.40n/m \).
Example: *Bivariate Normal (continued)*: There are actually a continuum of right-Haar priors given as follows.

- For the orthogonal matrix $\Gamma = \begin{pmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta) & \cos(\beta) \end{pmatrix}$, $-\pi/2 < \beta \leq \pi/2$,

- the right-Haar prior based on the transformed data ΓX is

$$
\pi(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho \mid \beta) = \frac{\sin^2(\beta)\sigma_1^2 + \cos^2(\beta)\sigma_2^2 + 2\sin(\beta)\cos(\beta)\rho\sigma_1\sigma_2}{\sigma_1^2\sigma_2^2(1 - \rho^2)}.
$$

- We thus have a class of priors indexed by a hyperparameter β.

- The natural prior distribution on β is the (proper) uniform distribution (being uniform over the set of rotations is natural.)

- The resulting prior is

$$
\pi^O(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \pi(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho \mid \beta) d\beta \propto \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} \right) \frac{1}{(1 - \rho^2)}
$$

the same bad prior as the average of the original two right-Haar priors.
Empirical hierarchical approach: Find the empirical Bayes estimate $\hat{\beta}$ and use $\pi(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho \mid \hat{\beta})$ as the overall prior.

This was shown in Sun and Berger (2007) to result in a terrible overall prior, much worse than either the individual reference priors or even the bad prior average.
Summary

- There is an important need for overall objective priors for models.
- The reference distance approach is natural, and seems to work well when reference priors are proper.
- It is unclear if the reference distance approach can be used when the reference priors are improper.
- The prior averaging approach is not recommended when the reference priors are improper and can be computationally difficult even when they are proper.
- The prior modeling approach seems excellent (as usual), and is recommended if one can find a natural class of proper priors to initiate the hierarchical analysis.
- The failure of the hierarchical approach for the right-Haar priors in the bivariate normal example was dramatic, suggesting that using improper priors are the bottom level of a hierarchy is a bad idea.
Thanks!