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Exam- November 30, 2017- Time 2 hours

Exercise 1 (9pt). Let

f(x) =
1

1 + |x|
x ∈ R2.

(1) Show that f ∈ L∞(R2) and compute ‖f‖∞.

(2) Show that f 6∈ L1(R2).

(3) For which p > 1, we have that f ∈ Lp(R2)?

Exercise 2 (24pt).

(1) State the Hölder inequality in Lp spaces.

(2) Let Ω ⊂ RN be a measurable set such that |Ω| < ∞ and p > 1. Let (fn) be a
sequence of functions in Lp(Ω) and f ∈ Lp(Ω) such that fn → f in Lp(Ω).
Show that fn, f ∈ L1(Ω) and that fn → f in L1(Ω).
Show moreover that

´
Ω
fn(x)dx→

´
Ω
f(x)dx.

(hint: recall that |
´

Ω
(fn(x)− f(x))dx| ≤

´
Ω
|fn(x)− f(x)|dx.)

(3) State the definition of closed set in a normed space, and recall also the equivalent
characterization of closed sets.

(4) Let

M =

{
f ∈ L2(0, 1),

∣∣∣∣ ˆ 1

0

f(x)dx = 0

}
.

Show that M is a closed subspace of L2(0, 1) (hint: use 2).

Show that for all f ∈ L2(0, 1), f −
´ 1

0
f(t)dt ∈M .

(5) Show that

M⊥ = C = {f ∈ L2(0, 1) |f(x) = c almost everywhere for some c ∈ Rn }
(C is the subspace of functions which are constants almost everywhere. )

(hint: use 4 and show that if f ∈M⊥ then
´ 1

0
(f(x)−

´ 1

0
f(t)dt)2dx = 0).

(6) Compute the orthogonal projection of f(x) = x on C.

(7) State the theorem of the orthogonal projection in Hilbert spaces.

(8) Write the decomposition of f(x) = x as the sum of an element of M and of an
element of C. Which is the orthogonal projection of f on M?
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Sketch of solutions

Solution 1.

(1) We observe that 0 ≤ f(x) ≤ 1 for every x ∈ R2 and moreover f(0) = 1. We
consider the set A(t) = {t ∈ R |f(x) > t}. Then

A(t) =

{
∅ t ≥ 1

B
(
0, 1

t
− 1
)

t < 1.

In both case, A(t) is a measurable set, so f is measurable. We conclude moreover
that f ∈ L∞(R2) and ‖f‖∞ = 1.

(2) By (1) we get that |A(t)| = 0 if t ≥ 1 and |A(t)| = π
(

1
t
− 1
)2

= π
(

1
t2
− 2

t
+ 1
)

if t < 1. Thereforeˆ
R2

f(x)dx =

ˆ 1

0

π

(
1

t2
− 2

t
+ 1

)
dt =

[
−1

t
− 2 log t+ t

]1

0

= −∞.

Therefore f 6∈ L1(R2).
(3) Let p > 1 and we compute Ap(t) = {t ∈ R |(f(x))p > t}. Reasoning as in (1)

we have that

Ap(t) =

{
∅ t ≥ 1

B
(

0, 1

t
1
p
− 1
)

t < 1.

Therefore |B(t) = 0 if t ≥ 1 and |B(t)| = π
(

1

t
1
p
− 1
)2

= π
(

1

t
2
p
− 2

t
1
p

+ 1
)

if

t < 1. Then we compute

ˆ
R2

(f(x))pdx =

ˆ 1

0

π

(
1

t
2
p

− 2

t
1
p

+ 1

)
dt =

[
1

1− 2
p

t1−
2
p − 2

1− 1
p

t1−
1
p + t

]1

0

6=∞ iff p > 2.

So f ∈ Lp(R2) for all p > 2.
We could also observe that f(x) ≤ min( 1

|x| , 1) and that this function is in

Lp(R2) for all p > 2.

Solution 2.

(2) Since |Ω| < ∞, then χΩ ∈ Lq(Rn) for every q ≥ 1. Then by Hölder inequality
if g ∈ Lp(Ω) then gχΩ ∈ L1(Rn), which is equivalent to say that g ∈ L1(Ω).
Moreover, always by Hölder inequality

‖g‖L1(Ω) ≤ ‖g‖Lp(Ω)‖χΩ‖
L

p
p−1 (Ω)

= ‖g‖Lp(Ω)|Ω|
p−1
p .

This implies that fn, f ∈ L1(Ω) for every n and that

‖fn − f‖L1(Ω) ≤ ‖fn − f‖Lp(Ω)|Ω|
p−1
p .
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So, if ‖fn − f‖Lp(Ω) → 0, then ‖fn − f‖L1(Ω) → 0.
Finally observe that

|
ˆ

Ω

(fn(x)− f(x))dx| ≤
ˆ

Ω

|fn(x)− f(x)|dx.

So, if
´

Ω
|fn(x)− f(x)|dx → 0, then

´
Ω

(fn(x)− f(x))dx → 0, which was what
we wanted to prove.

(4) If f, g ∈M , then αf+βg ∈M for every α, β ∈ R, since
´ 1

0
(αf(x)+βg(x))dx =

α
´ 1

0
f(x)dx + β

´ 1

0
g(x)dx = 0. This implies that M is a vectorial subspace of

L2(0, 1) Moreover, if fn is a sequence of functions in M such that fn → f

in L2(0, 1), then by item 2, 0 =
´ 1

0
fn(x)dx →

´ 1

0
f(x)dx, which implies that

f ∈M . This implies that M is closed.
Observe that if f ∈ L2(0, 1), then it is immediate to check that

´ 1

0
(f(x) −´ 1

0
f(t)dt)dx =

´ 1

0
f(x)dx−

´ 1

0

´ 1

0
f(t)dtdx = 0.

(5) Let g ∈ C, then by definition of C, there exists a constant c such that g(x) = c
for all x ∈ (0, 1) \ Cg, with |Cg| = 0. Therefore, for every f ∈M , we have thatˆ 1

0

f(x)g(x)dx =

ˆ
(0,1)\Cg

f(x)cdx = c

ˆ 1

0

f(x)dx = 0.

So C ⊆M⊥.
We consider now g ∈M⊥. Then by definition for all f ∈M ,

´ 1

0
f(x)g(x)dx =

0. Moreover since f ∈M , we have thatˆ 1

0

(g(x)− c)f(x)dx =

ˆ 1

0

f(x)g(x)dx− c
ˆ 1

0

f(x)dx = 0 for all c ∈ R.

By 4, we get that g(x) −
´ 1

0
g(t)dt ∈ M . So, if we substitute in the previous

equality to f the function g(x) −
´ 1

0
g(t)dt ∈ M and to c =

´ 1

0
g(t)dt, we get

that for all g ∈M⊥

ˆ 1

0

(g(x)−
ˆ 1

0

g(t)dt)2dx = 0.

This implies that g(x) =
´ 1

0
g(t)dt for almost every x in (0, 1), so g ∈ C.

(6) The orthogonal projection of f in C is the element of C which has minimal
distance from f (in L2). So, we compute

min
c∈R
‖x− c‖L2(0,1)2 = min

c∈R

ˆ 1

0

(x− c)2dx = min
c∈R

ˆ 1

0

x2 − 2xc+ c2dx = min
c∈R

(
1

3
− c+ c2).

The minimum is attained at c = 1
2

so the orthogonal projection of x in C is 1
2
.

(8) By the theorem of orthogonal projection every element f ∈ L2(0, 1) can be
written in a unique way as the such of an element of M and an element of C.
By 6, we have that the orthogonal projection of x in C is 1

2
, so x − 1

2
∈ M .

Therefore the decomposition of x is the following x = x− 1
2

+ 1
2
. The orthogonal

projection of x in M is x− 1
2
.


