ADVANCED MATHEMATICS FOR STATISTICS- FUNCTIONAL ANALYSIS, A.A. 2017-2018

TEACHER A. CESARONI

EXAM- NOVEMBER 30, 2017- TIME 2 HOURS

Exercise 1 (9pt). Let

$$f(x) = \frac{1}{1+|x|} \qquad x \in \mathbb{R}^2.$$

- (1) Show that $f \in L^{\infty}(\mathbb{R}^2)$ and compute $||f||_{\infty}$.
- (2) Show that $f \notin L^1(\mathbb{R}^2)$.
- (3) For which p > 1, we have that $f \in L^p(\mathbb{R}^2)$?

Exercise 2 (24pt).

- (1) State the Hölder inequality in L^p spaces.
- (2) Let $\Omega \subset \mathbb{R}^N$ be a measurable set such that $|\Omega| < \infty$ and p > 1. Let (f_n) be a sequence of functions in $L^p(\Omega)$ and $f \in L^p(\Omega)$ such that $f_n \to f$ in $L^p(\Omega)$. Show that $f_n, f \in L^1(\Omega)$ and that $f_n \to f$ in $L^1(\Omega)$. Show moreover that $\int_{\Omega} f_n(x) dx \to \int_{\Omega} f(x) dx$. (hint: recall that $|\int_{\Omega} (f_n(x) - f(x)) dx| \leq \int_{\Omega} |f_n(x) - f(x)| dx$.)
- (3) State the definition of closed set in a normed space, and recall also the equivalent characterization of closed sets.
- (4) Let

$$M = \left\{ f \in L^2(0,1), \ \left| \ \int_0^1 f(x) dx = 0 \right\}.$$

Show that M is a closed subspace of $L^2(0,1)$ (hint: use 2). Show that for all $f \in L^2(0,1)$, $f - \int_0^1 f(t) dt \in M$.

(5) Show that

 $M^{\perp} = C = \{ f \in L^2(0,1) \mid f(x) = c \text{ almost everywhere for some } c \in \mathbb{R}^n \}$

(*C* is the subspace of functions which are constants almost everywhere.) (**hint:** use 4 and show that if $f \in M^{\perp}$ then $\int_0^1 (f(x) - \int_0^1 f(t)dt)^2 dx = 0$).

- (6) Compute the orthogonal projection of f(x) = x on C.
- (7) State the theorem of the orthogonal projection in Hilbert spaces.
- (8) Write the decomposition of f(x) = x as the sum of an element of M and of an element of C. Which is the orthogonal projection of f on M?

SKETCH OF SOLUTIONS

Solution 1.

(1) We observe that $0 \le f(x) \le 1$ for every $x \in \mathbb{R}^2$ and moreover f(0) = 1. We consider the set $A(t) = \{t \in \mathbb{R} | f(x) > t\}$. Then

$$A(t) = \begin{cases} \emptyset & t \ge 1\\ B\left(0, \frac{1}{t} - 1\right) & t < 1. \end{cases}$$

In both case, A(t) is a measurable set, so f is measurable. We conclude moreover that $f \in L^{\infty}(\mathbb{R}^2)$ and $||f||_{\infty} = 1$.

(2) By (1) we get that |A(t)| = 0 if $t \ge 1$ and $|A(t)| = \pi \left(\frac{1}{t} - 1\right)^2 = \pi \left(\frac{1}{t^2} - \frac{2}{t} + 1\right)$ if t < 1. Therefore

$$\int_{\mathbb{R}^2} f(x)dx = \int_0^1 \pi \left(\frac{1}{t^2} - \frac{2}{t} + 1\right)dt = \left[-\frac{1}{t} - 2\log t + t\right]_0^1 = -\infty$$

Therefore $f \notin L^1(\mathbb{R}^2)$.

(3) Let p > 1 and we compute $A_p(t) = \{t \in \mathbb{R} \mid (f(x))^p > t\}$. Reasoning as in (1) we have that

$$A_p(t) = \begin{cases} \emptyset & t \ge 1\\ B\left(0, \frac{1}{t^{\frac{1}{p}}} - 1\right) & t < 1. \end{cases}$$

Therefore |B(t) = 0 if $t \ge 1$ and $|B(t)| = \pi \left(\frac{1}{t^{\frac{1}{p}}} - 1\right)^2 = \pi \left(\frac{1}{t^{\frac{2}{p}}} - \frac{2}{t^{\frac{1}{p}}} + 1\right)$ if t < 1. Then we compute

$$\int_{\mathbb{R}^2} (f(x))^p dx = \int_0^1 \pi \left(\frac{1}{t^{\frac{2}{p}}} - \frac{2}{t^{\frac{1}{p}}} + 1 \right) dt = \left[\frac{1}{1 - \frac{2}{p}} t^{1 - \frac{2}{p}} - \frac{2}{1 - \frac{1}{p}} t^{1 - \frac{1}{p}} + t \right]_0^1 \neq \infty \qquad \text{iff } p > 2.$$

So $f \in L^p(\mathbb{R}^2)$ for all p > 2.

We could also observe that $f(x) \leq \min(\frac{1}{|x|}, 1)$ and that this function is in $L^p(\mathbb{R}^2)$ for all p > 2.

Solution 2.

(2) Since $|\Omega| < \infty$, then $\chi_{\Omega} \in L^{q}(\mathbb{R}^{n})$ for every $q \geq 1$. Then by Hölder inequality if $g \in L^{p}(\Omega)$ then $g\chi_{\Omega} \in L^{1}(\mathbb{R}^{n})$, which is equivalent to say that $g \in L^{1}(\Omega)$. Moreover, always by Hölder inequality

$$||g||_{L^{1}(\Omega)} \leq ||g||_{L^{p}(\Omega)} ||\chi_{\Omega}||_{L^{\frac{p}{p-1}}(\Omega)} = ||g||_{L^{p}(\Omega)} |\Omega|^{\frac{p-1}{p}}.$$

This implies that $f_n, f \in L^1(\Omega)$ for every n and that

$$||f_n - f||_{L^1(\Omega)} \le ||f_n - f||_{L^p(\Omega)} |\Omega|^{\frac{p-1}{p}}.$$

So, if $||f_n - f||_{L^p(\Omega)} \to 0$, then $||f_n - f||_{L^1(\Omega)} \to 0$. Finally observe that

$$\left|\int_{\Omega} (f_n(x) - f(x))dx\right| \le \int_{\Omega} |f_n(x) - f(x)|dx.$$

So, if $\int_{\Omega} |f_n(x) - f(x)| dx \to 0$, then $\int_{\Omega} (f_n(x) - f(x)) dx \to 0$, which was what we wanted to prove.

(4) If $f, g \in M$, then $\alpha f + \beta g \in M$ for every $\alpha, \beta \in \mathbb{R}$, since $\int_0^1 (\alpha f(x) + \beta g(x)) dx =$ $\alpha \int_0^1 f(x) dx + \beta \int_0^1 g(x) dx = 0$. This implies that M is a vectorial subspace of $L^2(0,1)$ Moreover, if f_n is a sequence of functions in M such that $f_n \to f$ in $L^2(0,1)$, then by item 2, $0 = \int_0^1 f_n(x) dx \to \int_0^1 f(x) dx$, which implies that $f \in M$. This implies that M is closed.

Observe that if $f \in L^2(0,1)$, then it is immediate to check that $\int_0^1 (f(x) - f(x)) dx$ $\int_0^1 f(t)dt dx = \int_0^1 f(x)dx - \int_0^1 \int_0^1 f(t)dt dx = 0.$ (5) Let $g \in C$, then by definition of C, there exists a constant c such that g(x) = c

for all $x \in (0,1) \setminus C_q$, with $|C_q| = 0$. Therefore, for every $f \in M$, we have that

$$\int_{0}^{1} f(x)g(x)dx = \int_{(0,1)\backslash C_g} f(x)cdx = c \int_{0}^{1} f(x)dx = 0$$

So $C \subseteq M^{\perp}$.

We consider now $g \in M^{\perp}$. Then by definition for all $f \in M$, $\int_0^1 f(x)g(x)dx =$ 0. Moreover since $f \in M$, we have that

$$\int_{0}^{1} (g(x) - c)f(x)dx = \int_{0}^{1} f(x)g(x)dx - c\int_{0}^{1} f(x)dx = 0 \quad \text{for all } c \in \mathbb{R}.$$

By 4, we get that $g(x) - \int_0^1 g(t) dt \in M$. So, if we substitute in the previous equality to f the function $g(x) - \int_0^1 g(t) dt \in M$ and to $c = \int_0^1 g(t) dt$, we get that for all $q \in M^{\perp}$

$$\int_0^1 (g(x) - \int_0^1 g(t)dt)^2 dx = 0.$$

This implies that $g(x) = \int_0^1 g(t) dt$ for almost every x in (0, 1), so $g \in C$.

(6) The orthogonal projection of f in C is the element of C which has minimal distance from f (in L^2). So, we compute

$$\min_{c \in \mathbb{R}} \|x - c\|_{L^2(0,1)^2} = \min_{c \in \mathbb{R}} \int_0^1 (x - c)^2 dx = \min_{c \in \mathbb{R}} \int_0^1 x^2 - 2xc + c^2 dx = \min_{c \in \mathbb{R}} (\frac{1}{3} - c + c^2).$$

The minimum is attained at $c = \frac{1}{2}$ so the orthogonal projection of x in C is $\frac{1}{2}$. (8) By the theorem of orthogonal projection every element $f \in L^2(0,1)$ can be

written in a unique way as the such of an element of M and an element of C. By 6, we have that the orthogonal projection of x in C is $\frac{1}{2}$, so $x - \frac{1}{2} \in M$. Therefore the decomposition of x is the following $x = x - \frac{1}{2} + \frac{1}{2}$. The orthogonal projection of x in M is $x - \frac{1}{2}$.