Exam- November 30, 2017- Time 2 hours

Exercise 1 (9pt). Let

$$
f(x)=\frac{1}{1+|x|} \quad x \in \mathbb{R}^{2}
$$

(1) Show that $f \in L^{\infty}\left(\mathbb{R}^{2}\right)$ and compute $\|f\|_{\infty}$.
(2) Show that $f \notin L^{1}\left(\mathbb{R}^{2}\right)$.
(3) For which $p>1$, we have that $f \in L^{p}\left(\mathbb{R}^{2}\right)$?

Exercise 2 (24pt).
(1) State the Hölder inequality in L^{p} spaces.
(2) Let $\Omega \subset \mathbb{R}^{N}$ be a measurable set such that $|\Omega|<\infty$ and $p>1$. Let $\left(f_{n}\right)$ be a sequence of functions in $L^{p}(\Omega)$ and $f \in L^{p}(\Omega)$ such that $f_{n} \rightarrow f$ in $L^{p}(\Omega)$.
Show that $f_{n}, f \in L^{1}(\Omega)$ and that $f_{n} \rightarrow f$ in $L^{1}(\Omega)$.
Show moreover that $\int_{\Omega} f_{n}(x) d x \rightarrow \int_{\Omega} f(x) d x$.
(hint: recall that $\left|\int_{\Omega}\left(f_{n}(x)-f(x)\right) d x\right| \leq \int_{\Omega}\left|f_{n}(x)-f(x)\right| d x$.)
(3) State the definition of closed set in a normed space, and recall also the equivalent characterization of closed sets.
(4) Let

$$
M=\left\{f \in L^{2}(0,1), \mid \int_{0}^{1} f(x) d x=0\right\} .
$$

Show that M is a closed subspace of $L^{2}(0,1)$ (hint: use 2$)$.
Show that for all $f \in L^{2}(0,1), f-\int_{0}^{1} f(t) d t \in M$.
(5) Show that
$M^{\perp}=C=\left\{f \in L^{2}(0,1) \mid f(x)=c\right.$ almost everywhere for some $\left.c \in \mathbb{R}^{n}\right\}$
(C is the subspace of functions which are constants almost everywhere.)
(hint: use 4 and show that if $f \in M^{\perp}$ then $\int_{0}^{1}\left(f(x)-\int_{0}^{1} f(t) d t\right)^{2} d x=0$).
(6) Compute the orthogonal projection of $f(x)=x$ on C.
(7) State the theorem of the orthogonal projection in Hilbert spaces.
(8) Write the decomposition of $f(x)=x$ as the sum of an element of M and of an element of C. Which is the orthogonal projection of f on M ?

Sketch of solutions

Solution 1.

(1) We observe that $0 \leq f(x) \leq 1$ for every $x \in \mathbb{R}^{2}$ and moreover $f(0)=1$. We consider the set $A(t)=\{t \in \mathbb{R} \mid f(x)>t\}$. Then

$$
A(t)= \begin{cases}\emptyset & t \geq 1 \\ B\left(0, \frac{1}{t}-1\right) & t<1\end{cases}
$$

In both case, $A(t)$ is a measurable set, so f is measurable. We conclude moreover that $f \in L^{\infty}\left(\mathbb{R}^{2}\right)$ and $\|f\|_{\infty}=1$.
(2) By (1) we get that $|A(t)|=0$ if $t \geq 1$ and $|A(t)|=\pi\left(\frac{1}{t}-1\right)^{2}=\pi\left(\frac{1}{t^{2}}-\frac{2}{t}+1\right)$ if $t<1$. Therefore

$$
\int_{\mathbb{R}^{2}} f(x) d x=\int_{0}^{1} \pi\left(\frac{1}{t^{2}}-\frac{2}{t}+1\right) d t=\left[-\frac{1}{t}-2 \log t+t\right]_{0}^{1}=-\infty .
$$

Therefore $f \notin L^{1}\left(\mathbb{R}^{2}\right)$.
(3) Let $p>1$ and we compute $A_{p}(t)=\left\{t \in \mathbb{R} \mid(f(x))^{p}>t\right\}$. Reasoning as in (1) we have that

$$
A_{p}(t)= \begin{cases}\emptyset & t \geq 1 \\ B\left(0, \frac{1}{t^{\frac{1}{p}}}-1\right) & t<1\end{cases}
$$

Therefore $\mid B(t)=0$ if $t \geq 1$ and $|B(t)|=\pi\left(\frac{1}{t^{\frac{1}{p}}}-1\right)^{2}=\pi\left(\frac{1}{t^{\frac{2}{p}}}-\frac{2}{t^{\frac{1}{p}}}+1\right)$ if $t<1$. Then we compute
$\int_{\mathbb{R}^{2}}(f(x))^{p} d x=\int_{0}^{1} \pi\left(\frac{1}{t^{\frac{2}{p}}}-\frac{2}{t^{\frac{1}{p}}}+1\right) d t=\left[\frac{1}{1-\frac{2}{p}} t^{1-\frac{2}{p}}-\frac{2}{1-\frac{1}{p}} t^{1-\frac{1}{p}}+t\right]_{0}^{1} \neq \infty \quad$ iff $p>2$.
So $f \in L^{p}\left(\mathbb{R}^{2}\right)$ for all $p>2$.
We could also observe that $f(x) \leq \min \left(\frac{1}{|x|}, 1\right)$ and that this function is in $L^{p}\left(\mathbb{R}^{2}\right)$ for all $p>2$.

Solution 2.

(2) Since $|\Omega|<\infty$, then $\chi_{\Omega} \in L^{q}\left(\mathbb{R}^{n}\right)$ for every $q \geq 1$. Then by Hölder inequality if $g \in L^{p}(\Omega)$ then $g \chi_{\Omega} \in L^{1}\left(\mathbb{R}^{n}\right)$, which is equivalent to say that $g \in L^{1}(\Omega)$. Moreover, always by Hölder inequality

$$
\|g\|_{L^{1}(\Omega)} \leq\|g\|_{L^{p}(\Omega)}\left\|\chi_{\Omega}\right\|_{L^{\frac{p}{p-1}}(\Omega)}=\|g\|_{L^{p}(\Omega)}|\Omega|^{\frac{p-1}{p}}
$$

This implies that $f_{n}, f \in L^{1}(\Omega)$ for every n and that

$$
\left\|f_{n}-f\right\|_{L^{1}(\Omega)} \leq\left\|f_{n}-f\right\|_{L^{p}(\Omega)}|\Omega|^{\frac{p-1}{p}}
$$

So, if $\left\|f_{n}-f\right\|_{L^{p}(\Omega)} \rightarrow 0$, then $\left\|f_{n}-f\right\|_{L^{1}(\Omega)} \rightarrow 0$.
Finally observe that

$$
\left|\int_{\Omega}\left(f_{n}(x)-f(x)\right) d x\right| \leq \int_{\Omega}\left|f_{n}(x)-f(x)\right| d x
$$

So, if $\int_{\Omega}\left|f_{n}(x)-f(x)\right| d x \rightarrow 0$, then $\int_{\Omega}\left(f_{n}(x)-f(x)\right) d x \rightarrow 0$, which was what we wanted to prove.
(4) If $f, g \in M$, then $\alpha f+\beta g \in M$ for every $\alpha, \beta \in \mathbb{R}$, since $\int_{0}^{1}(\alpha f(x)+\beta g(x)) d x=$ $\alpha \int_{0}^{1} f(x) d x+\beta \int_{0}^{1} g(x) d x=0$. This implies that M is a vectorial subspace of $L^{2}(0,1)$ Moreover, if f_{n} is a sequence of functions in M such that $f_{n} \rightarrow f$ in $L^{2}(0,1)$, then by item $2,0=\int_{0}^{1} f_{n}(x) d x \rightarrow \int_{0}^{1} f(x) d x$, which implies that $f \in M$. This implies that M is closed.

Observe that if $f \in L^{2}(0,1)$, then it is immediate to check that $\int_{0}^{1}(f(x)-$ $\left.\int_{0}^{1} f(t) d t\right) d x=\int_{0}^{1} f(x) d x-\int_{0}^{1} \int_{0}^{1} f(t) d t d x=0$.
(5) Let $g \in C$, then by definition of C, there exists a constant c such that $g(x)=c$ for all $x \in(0,1) \backslash C_{g}$, with $\left|C_{g}\right|=0$. Therefore, for every $f \in M$, we have that

$$
\int_{0}^{1} f(x) g(x) d x=\int_{(0,1) \backslash C_{g}} f(x) c d x=c \int_{0}^{1} f(x) d x=0 .
$$

So $C \subseteq M^{\perp}$.
We consider now $g \in M^{\perp}$. Then by definition for all $f \in M, \int_{0}^{1} f(x) g(x) d x=$ 0 . Moreover since $f \in M$, we have that

$$
\int_{0}^{1}(g(x)-c) f(x) d x=\int_{0}^{1} f(x) g(x) d x-c \int_{0}^{1} f(x) d x=0 \quad \text { for all } c \in \mathbb{R}
$$

By 4, we get that $g(x)-\int_{0}^{1} g(t) d t \in M$. So, if we substitute in the previous equality to f the function $g(x)-\int_{0}^{1} g(t) d t \in M$ and to $c=\int_{0}^{1} g(t) d t$, we get that for all $g \in M^{\perp}$

$$
\int_{0}^{1}\left(g(x)-\int_{0}^{1} g(t) d t\right)^{2} d x=0
$$

This implies that $g(x)=\int_{0}^{1} g(t) d t$ for almost every x in $(0,1)$, so $g \in C$.
(6) The orthogonal projection of f in C is the element of C which has minimal distance from f (in L^{2}). So, we compute
$\min _{c \in \mathbb{R}}\|x-c\|_{L^{2}(0,1)^{2}}=\min _{c \in \mathbb{R}} \int_{0}^{1}(x-c)^{2} d x=\min _{c \in \mathbb{R}} \int_{0}^{1} x^{2}-2 x c+c^{2} d x=\min _{c \in \mathbb{R}}\left(\frac{1}{3}-c+c^{2}\right)$.
The minimum is attained at $c=\frac{1}{2}$ so the orthogonal projection of x in C is $\frac{1}{2}$.
(8) By the theorem of orthogonal projection every element $f \in L^{2}(0,1)$ can be written in a unique way as the such of an element of M and an element of C. By 6, we have that the orthogonal projection of x in C is $\frac{1}{2}$, so $x-\frac{1}{2} \in M$. Therefore the decomposition of x is the following $x=x-\frac{1}{2}+\frac{1}{2}$. The orthogonal projection of x in M is $x-\frac{1}{2}$.

