FUNCTIONAL ANALYSIS, A.A. 2018-2019

EXAM- DECEMBER 7- TIME 2 HOURS

Problem 1.

(1) Let $\Omega \subseteq \mathbb{R}^n$ be a open bounded set and p > 1. Let $f \in L^p(\Omega)$ and $(f_k)_k$ be a sequence of functions in $L^p(\Omega)$ such that $f_k \to f$ strongly in $L^p(\Omega)$.

Prove that $f_k \to f$ strongly in $L^1(\Omega)$. Show that

$$\lim_{k} \int_{\Omega} f_k(x) dx = \int_{\Omega} f(x) dx.$$

(2) Write the definition of open set and of closed sets in a metric space and also the equivalent characterization of closed sets. Show that the set

$$E = \left\{ g \in L^p(\Omega) \mid \int_{\Omega} g(x) dx > 0 \right\}$$

is a open set in $(L^p(\Omega), \|\cdot\|_p)$.

(3) Let p > 1, $g \in L^p(\Omega)$ and $(g_k)_k$ be a sequence of functions in $L^p(\Omega)$ such that $g_k \rightharpoonup g$ weakly in $L^p(\Omega)$. Show that for all measurable sets $A \subseteq \Omega$ such that $\mu(A) < +\infty$

$$\lim_{k} \int_{A} g_{k}(x) dx = \int_{A} g(x) dx.$$

Problem 2.

- (1) Let ν be the Gaussian measure, (defined as $\nu(A) = \int_A e^{-|x|^2} dx$). Show that it is absolutely continuous with respect to the Lebesgue measure.
- (2) Let δ_0 be the Dirac measure (defined as $\delta_0(A) = 1$ if $0 \in A$ and $\delta_0(A) = 0$ if $0 \notin A$). Show that it is singular with respect to the Lebesgue measure.
- (3) Define the sequence of functions, for $k \in \mathbb{N}$,

$$f_k(x) := ke^{-(kx)^2} : \mathbb{R} \to \mathbb{R}.$$

Prove that $f_k \to 0$ in measure in \mathbb{R} , and that $f_k \not\to 0$ in $L^p(\mathbb{R})$ for any $p \ge 1$. (4) Let $a, b \in \mathbb{R}$ with a < b. Show that

$$\lim_{k} \int_{\mathbb{R}} \chi_{(a,b)}(x) f_k(x) dx = \delta_0((a,b)) \nu(\mathbb{R}) = \begin{cases} \nu(\mathbb{R}) & \text{if } a \le 0 \text{ and } b \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

Sketch of solutions

Solution 1.

(1) Since Ω si bounded, by Holder inequality we get that

$$||f_k - f||_1 \le ||f_k - f||_p \mu(\Omega)^{1 - \frac{1}{p}}.$$

Therefore strong L^p convergence implies strong L^1 convergence. Moreover

$$0 \le \left| \int_{\Omega} (f_k(x) - f(x)) dx \right| \le \int_{\Omega} |f_k(x) - f(x)| dx = \|f_k - f\|_1$$

which implies that $\int_{\Omega} f_k(x) dx \to \int_{\Omega} f(x) dx$. (2) A is an open set if for all $x \in A$ there exists r > 0 such that $B(x, r) \subseteq A$. C is closed if its complement is open, or equivalently if for all (x_n) sequences such that $x_n \in C$ for all n and $x_n \to x$, we get that $x \in C$. To prove that E is open, it is sufficient to prove that the complement of E which is given by

$$F = \left\{ g \in L^p(\Omega) \mid \int_{\Omega} g(x) dx \le 0 \right\}$$

is closed. We take a sequence of functions g_n such that $g_n \in F$ and $g_n \to g$ in $L^p(\Omega)$. Then by the previous item $0 \ge \lim_k \int_{\Omega} g_k(x) dx = \int_{\Omega} g(x) dx$. This implies that $g \in F$. So, by the characterization of closed set this implies that F is closed.

(3) If $A \subseteq \Omega$ is a measurable set such that $\mu(A) < +\infty$, then $\chi_A \in L^q(\Omega)$ for all $q \geq 1$. Therefore, by definition of weak convergence $\lim_k \int_{\Omega} f_k(x) \chi_A(x) dx =$ $\int_{\Omega} f(x)\chi_A(x)dx$, which is the statement.

Solution 2.

- (1) If $A \subseteq \mathbb{R}$ is a measurable set with $\mu(A) = 0$, then $e^{-|x|^2}\chi_A(x) = 0$ almost everywhere. This implies that $\int_{\mathbb{R}} e^{-|x|^2} \chi_A(x) dx = 0 = \nu(A)$. This implies that $\nu << \mu$.
- (2) $\mathbb{R} = (\mathbb{R} \setminus \{0\}) \cup \{0\}$, and $\delta_0(\mathbb{R} \setminus \{0\}) = 0$ whereas $\mu(\{0\}) = 0$.
- (3) Fix $\varepsilon > 0$ and let

$$A_{\varepsilon}^{k} = \{x \in \mathbb{R} \mid f_{k}(x) > \varepsilon\} = \{x \mid e^{-k^{2}|x|^{2}} > \frac{\varepsilon}{k}\} = \left(-\frac{\sqrt{\log \frac{k}{\varepsilon}}}{k}, \frac{\sqrt{\log \frac{k}{\varepsilon}}}{k}\right).$$

Then $\mu(A_{\varepsilon}^k) = \frac{2}{k} \sqrt{\log \frac{k}{\varepsilon}} \to 0$ as $k \to +\infty$. This implies that $f_k \to 0$ in measure. Moreover for every $p \ge 1$, making the change of variable $y = kx\sqrt{p}$,

$$\int_{\mathbb{R}} k^{p} e^{-pk^{2}|x|^{2}} dx = \frac{k^{p-1}}{\sqrt{p}} \int_{\mathbb{R}} e^{-|y|^{2}} dy \neq 0 \quad \text{as } k \to +\infty$$

Therefore $f_k \not\to 0$ in $L^p(\mathbb{R})$.

Finally $||f_k||_{\infty} = k \not\to 0$ as $k \to +\infty$. So $f_k \not\to 0$ in $L^{\infty}(\mathbb{R})$. (4) We compute, making the change of variable y = kx,

$$\int_{\mathbb{R}} \chi_{(a,b)}(x) f_k(x) dx = \int_a^b k e^{-k^2 |x|^2} dx = \int_{ka}^{kb} e^{-|y|^2} dy = \int_{\mathbb{R}} \chi_{(ka,kb)}(y) e^{-|y|^2} dy.$$

Let $y \in \mathbb{R}$ fixed, observe that $\chi_{(ka,kb)}(y) \to 0$ if either a > 0 or b < 0, whereas $\chi_{(ka,kb)}(y) \to 1$ if $a \leq 0$ and $b \geq 0$. Therefore $\chi_{(ka,kb)}(y)e^{-|y|^2} \to \chi_{(a,b)}(0)e^{-|y|^2}$ and moreover $\chi_{(ka,kb)}(y)e^{-|y|^2} \leq e^{-|y|^2} \in L^1(\mathbb{R})$. Then we conclude by Lebesgue dominated convergence theorem that

$$\lim_{k} \int_{\mathbb{R}} \chi_{(a,b)}(x) f_k(x) dx = \int_{\mathbb{R}} \chi_{(a,b)}(0) e^{-|y|^2} dy = \chi_{(a,b)}(0) \nu(\mathbb{R}).$$