Problem 1.

(1) Give the definition of absolutely continuous measure and of singular measure (with respect to the Lebesgue measure in \mathbb{R}).
(2) Consider the measure μ defined in \mathcal{M} (the σ-algebra of Lebesgue measurable sets) as follows: for every $A \subseteq \mathbb{R}$, measurable,

$$
\mu(A)=\text { number of elements } z \in \mathbb{Z} \text {, such that } z \in A \text {. }
$$

Check that it is a measure, and write if μ is either absolutely continuous with respect to \mathcal{L} (Lebesgue measure) or singular with respect to \mathcal{L} or none of them.

Hint: recall that $\mathcal{L}(\mathbb{Z})=0$.

Problem 2.

(1) State the Hölder inequality for $f \in L^{p}(\mathbb{R}), g \in L^{q}(\mathbb{R})$.
(2) Let $g \geq 0$ such that $g \in L^{1}(\mathbb{R})$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a measurable function. Show that if for some $p>1$

$$
\int_{\mathbb{R}}|f(x)|^{p} g(x) d x<+\infty \quad \text { that is } f(x)[g(x)]^{\frac{1}{p}} \in L^{p}(\mathbb{R})
$$

then

$$
\int_{\mathbb{R}}|f(x)| g(x) d x<+\infty, \quad \text { that is } f(x) g(x) \in L^{1}(\mathbb{R})
$$

Problem 3. Let H be a Hilbert space on \mathbb{R}.
(1) Let $V \subset H$. Define the orthogonal subspace V^{\perp}.
(2) State the orthogonal projection theorem.
(3) Let $H=L^{2}(-\pi, \pi)$. Let

$$
e_{1}(x) \equiv \frac{1}{\sqrt{2 \pi}}, \quad e_{2}(x)=\frac{\sin x}{\sqrt{\pi}}
$$

Check that $\left\{e_{1}, e_{2}\right\}$ is a orthonormal set in $L^{2}(-\pi, \pi)$.
Hint: recall that $\int_{a}^{b} \sin ^{2} x d x=\left[\frac{x-\cos x \sin x}{2}\right]_{a}^{b}$.
(4) Compute the orthogonal projection of x and of x^{2} on the subspace $V \subset L^{2}(-\pi, \pi)$ which has orthonormal basis $\left\{e_{1}, e_{2}\right\}$.

Hint: recall that $\int_{a}^{b} x \sin x d x=[-x \cos x+\sin x]_{a}^{b}$.

Sketch of solutions

Solution 1. (1) $\mu \ll \mathcal{L}$ (μ is absolutely continuous with respect to Lebesgue) if for any $E \in \mathcal{M}$ such that $\mathcal{L}(E)=0$ there holds that $\mu(E)=0$.
$\mu \perp \mathcal{L}(\mu$ is singular with respect to Lebesgue) if there exist $A, B \in \mathcal{M}$ such that $\mathbb{R}=A \cup B, A \cap B=\emptyset$ and $\mu(A)=0, \mathcal{L}(B)=0$.
(2) Note that $\mu(\emptyset)=0$. Moreover, If $\left(A_{i}\right)_{i}$ is a sequence of pairwise disjoint measurable sets then by definition $\mu\left(\cup_{i} A_{i}\right)=$ number of $z \in \mathbb{Z}$ such that $z \in \cup_{i} A_{i}$. But $z \in \cup_{i} A_{i}$ if and only if $z \in A_{i}$ for exactly one i (since the sets are disjoint). Therefore $\mu\left(\cup_{i} A_{i}\right)=\sum_{i}$ number of $z \in \mathbb{Z}$ such that $z \in A_{i}=\sum_{i} \mu\left(A_{i}\right)$. This implies that μ is a measure.

Note that $\mathbb{R}=(\mathbb{R} \backslash \mathbb{Z}) \cup \mathbb{Z}$ and $\mathcal{L}(\mathbb{Z})=0$, whereas $\mu(\mathbb{R} \backslash \mathbb{Z})=0$. Therefore $\mu \perp \mathcal{L}$.

Solution 2.

(1) Let $f \in L^{p}(\mathbb{R}), g \in L^{q}(\mathbb{R})$ with $\frac{1}{p}+\frac{1}{q}=1$. Then $f(x) g(x) \in L^{1}(\mathbb{R})$ and there holds $\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$.
(2) Let $p>1$ and fix $q=\frac{p}{p-1}$ the conjugate exponent of p (so that $\frac{1}{p}+\frac{1}{q}=1$). Since $g \geq 0$ and $g \in L^{1}(\mathbb{R})$, we get that

$$
\left|[g(x)]^{\frac{1}{q}}\right|^{q}=g(x) \in L^{1}(\mathbb{R})
$$

and so $[g(x)]^{\frac{1}{q}} \in L^{q}(\mathbb{R})$. So by Hölder inequality we get

$$
f(x)[g(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}}=f(x) g(x) \in L^{1}(\mathbb{R}) .
$$

Solution 3.

(1) $V^{\perp}=\{h \in H, \mid(v, h)=0 \forall v \in V\}$.
(2) Let $V \subseteq H$ be a closed subspace in H. Then for all $h \in H$ there exists a unique element $v \in V$ and a unique element $w \in V^{\perp}$ such that $h=v+w$. Moreover v is called the orthogonal projection of h in V, since $h-v \in V^{\perp}$.
(3) It is sufficient to check that $\left(e_{1}, e_{2}\right)=0$ and that $\left\|e_{1}\right\|_{2}=1=\left\|e_{2}\right\|_{1}$. So,

$$
\left(e_{1}, e_{2}\right)=\int_{-\pi}^{\pi} \frac{1}{\sqrt{2 \pi}} \frac{\sin x}{\sqrt{\pi}} d x=\frac{1}{\sqrt{2} \pi} \int_{-\pi}^{\pi} \sin x d x=0
$$

$\operatorname{since} \sin x$ is a odd function. Moreover

$$
\left\|e_{1}\right\|_{2}^{2}=\int_{-\pi}^{\pi} \frac{1}{2 \pi} d x=1
$$

and

$$
\left\|e_{2}\right\|_{2}^{2}=\int_{-\pi}^{\pi} \frac{1}{\pi} \sin ^{2} x d x=\frac{1}{\pi}\left[\frac{x-\cos x \sin x}{2}\right]_{-\pi}^{\pi}=\frac{1}{2 \pi}(\pi-0-(-\pi-0))=\frac{2 \pi}{2 \pi}=1 .
$$

(4) By the theorem on the computation of the orthogonal projection we have that

$$
P_{V}(x)=a_{1} e_{1}(x)+a_{2} e_{2}(x) \quad P_{V}\left(x^{2}\right)=c_{1} e_{1}(x)+c_{2} e_{2}(x)
$$

where

$$
a_{1}=\left(x, e_{1}\right)=\int_{-\pi}^{\pi} \frac{1}{\sqrt{2 \pi}} x d x=0
$$

since x is a odd function,

$$
\begin{gathered}
a_{2}=\left(x, e_{2}\right)=\int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} x \sin x d x=\frac{1}{\sqrt{\pi}}[-x \cos x+\sin x]_{-\pi}^{\pi} \\
=\frac{1}{\sqrt{\pi}}(-\pi \cos \pi-(\pi) \cos (-\pi))=\frac{2 \pi}{\sqrt{\pi}}=2 \sqrt{\pi} \\
c_{1}=\left(x^{2}, e_{1}\right)=\int_{-\pi}^{\pi} \frac{1}{\sqrt{2 \pi}} x^{2} d x=\frac{1}{\sqrt{2 \pi}}\left[\frac{x^{3}}{3}\right]_{-\pi}^{\pi}=\frac{2 \pi^{3}}{3 \sqrt{2 \pi}} \\
c_{2}=\left(x^{2}, e_{2}\right)=\int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} x^{2} \sin x d x=0
\end{gathered}
$$

since $x^{2} \sin x$ is a odd function. Therefore the orthogonal projections of x and x^{2} in V are given by

$$
\begin{gathered}
P_{V}(x)=0 e_{1}(x)+2 \sqrt{\pi} e_{1}(x)=2 \sqrt{\pi} \frac{1}{\sqrt{\pi}} \sin x=2 \sin x \\
P_{V}\left(x^{2}\right)=\frac{2 \pi^{3}}{3 \sqrt{2 \pi}} e_{1}(x)+0 e_{2}(x)=\frac{2 \pi^{3}}{3 \sqrt{2 \pi}} \frac{1}{\sqrt{2 \pi}}=\frac{\pi^{2}}{3} .
\end{gathered}
$$

