ADVANCED MATHEMATICS FOR STATISTICS- A.A. 2020-2021 FUNCTIONAL ANALYSIS- TEACHER A. CESARONI EXAM- NOVEMBER 25, 2020- 11-12.30 (90 MINUTES)

Exercise 1.

- (1) Give the definition of absolutely continuous measure and of singular measure (with respect to the Lebesgue measure in \mathbb{R}).
- (2) Write the characterization of σ -finite absolutely continuous measure (in terms of functions f...)
- (3) Consider the increasing continuous. function

$$F(x) = \begin{cases} 1 & x \ge 0\\ e^x & x < 0 \end{cases}$$

and let μ_F the Borel measure associated to this function.

- (a) Show that this measure is finite and compute $\mu_F(\mathbb{R})$.
- (b) Compute $\mu_F(0,1)$, $\mu_F(-3,-2)$ and $\mu_F(-1,2)$.
- (c) Find, if it exists, a measurable function $f : \mathbb{R} \to \mathbb{R}$ such that $\mu_F(a, b) =$ $\int_{a}^{b} f(x) dx.$ (d) Is μ_{F} absolutely continuous with respect to Lebesgue? is it singular?

Exercise 2.

- (1) State the Holder inequality.
- (2) Prove that if $f \in L^2(0,2)$ then $f \in L^1(0,2)$ and moreover

$$\|f\|_1 \le \sqrt{2} \|f\|_2.$$

(3) Prove that if $f \in L^1(\mathbb{R})$ then

$$\mathcal{L}\left(x \text{ s.t. } |f(x)| \ge t\right) \le \frac{\|f\|_1}{t}.$$

SKETCH OF SOLUTIONS

Solution 1.

- (1) μ is absolutely continuous with respect to Lebesgue \mathcal{L} if for every Borel set A such that $\mathcal{L}(A) = 0$ there holds that also $\mu(A) = 0$. μ is singular with respect to Lebesgue \mathcal{L} if there exist A, B Borel sets such that $\mathbb{R} = A \cup B, A \cap B = \emptyset$, and $\mathcal{L}(A) = 0 = \mu(B)$.
- (2) A σ -finite measure μ is absolutely continuous with respect to Lebesgue \mathcal{L} if and only if there exists a measurable function $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) \ge 0$, $\int_{-M}^{M} f(x) dx < +\infty$ for every M > 0 and $\mu(a, b) = \int_{a}^{b} f(x) dx$.
- (3) (a) $\mu_F(\mathbb{R}) = \sup F \inf F = 1.$
 - (b) Note that F is continuous, therefore $\mu_F(a, b) = \mu_F(a, b]$. Therefore $\mu_F(0, 1) = F(1) F(0) = 1 1 = 0$, $\mu_F(-3, -2) = F(-2) F(-3) = e^{-2} e^{-3}$ and $\mu_F(-1, 2) = F(2) F(-1) = 1 e^{-2} = F(0) F(-2) = \mu_F(-2, 0)$.
 - (c) Note that $\mu_F(a,b) = 0$ if $b \ge a \ge 0$. Therefore f(x) = 0 if x > 0. On the other hand, if $a < b \le 0$, $\mu_F(a,b) = e^b e^a = \int_a^b e^x dx$. Therefore

$$f(x) = \begin{cases} e^x & x < 0\\ 0 & x > 0 \end{cases}$$

Note that $f \ge 0$ and $f \in L^1(\mathbb{R})$.

(d) By the previous point and characterization of absolutely continuous measure, μ_F is absolutely continuous with respect to Lebesgue.

Solution 2.

- (1) Let $f \in L^p(\mathbb{R})$, $g \in L^q(\mathbb{R})$, where $q = \frac{p}{p-1}$ (and $q = +\infty$ if p = 1). Then $fg \in L^1(\mathbb{R})$ and $\|fg\|_1 \le \|f\|_p \|g\|_q$.
- (2) Note that $\chi_{(0,2)} \in L^2(\mathbb{R})$ and $\|\chi_{(0,2)}\|_2 = \sqrt{2}$. By assumption $f\chi_{(0,2)} \in L^2(\mathbb{R})$, therefore by Holder inequality $f\chi_{(0,2)} \in L^1(\mathbb{R})$, that is $f \in L^1(0,2)$ and moreover

$$\|f\chi_{(0,2)}\|_{1} \le \|f\chi_{(0,2)}\|_{2} \|\chi_{(0,2)}\|_{2} = \|f\chi_{(0,2)}\|_{2} \sqrt{2}.$$

(3) By definition and monotonicity of the integral

$$||f||_1 = \int_{\mathbb{R}} |f(x)| dx \ge \int_{(x \text{ s.t. } |f(x)| \ge t)} |f(x)| dx \ge \int_{(x \text{ s.t. } |f(x)| \ge t)} t dx = t \mathcal{L} (x \text{ s.t. } |f(x)| \ge t).$$