Functional Analysis- teacher A. Cesaroni

Exam- November 25, 2020-11-12.30 (90 minutes)

Exercise 1.

(1) Give the definition of absolutely continuous measure and of singular measure (with respect to the Lebesgue measure in \mathbb{R}).
(2) Write the characterization of σ-finite absolutely continuous measure (in terms of functions f...)
(3) Consider the increasing continuous. function

$$
F(x)= \begin{cases}1 & x \geq 0 \\ e^{x} & x<0\end{cases}
$$

and let μ_{F} the Borel measure associated to this function.
(a) Show that this measure is finite and compute $\mu_{F}(\mathbb{R})$.
(b) Compute $\mu_{F}(0,1), \mu_{F}(-3,-2)$ and $\mu_{F}(-1,2)$.
(c) Find, if it exists, a measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\mu_{F}(a, b)=$ $\int_{a}^{b} f(x) d x$.
(d) Is μ_{F} absolutely continuous with respect to Lebesgue? is it singular?

Exercise 2.

(1) State the Holder inequality.
(2) Prove that if $f \in L^{2}(0,2)$ then $f \in L^{1}(0,2)$ and moreover

$$
\|f\|_{1} \leq \sqrt{2}\|f\|_{2}
$$

(3) Prove that if $f \in L^{1}(\mathbb{R})$ then

$$
\mathcal{L}(x \text { s.t. }|f(x)| \geq t) \leq \frac{\|f\|_{1}}{t} .
$$

Solution 1.

(1) μ is absolutely continuous with respect to Lebesgue \mathcal{L} if for every Borel set A such that $\mathcal{L}(A)=0$ there holds that also $\mu(A)=0$.
μ is singular with respect to Lebesgue \mathcal{L} if there exist A, B Borel sets such that $\mathbb{R}=A \cup B, A \cap B=\emptyset$, and $\mathcal{L}(A)=0=\mu(B)$.
(2) A σ-finite measure μ is absolutely continuous with respect to Lebesgue \mathcal{L} if and only if there exists a measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \geq 0$, $\int_{-M}^{M} f(x) d x<+\infty$ for every $M>0$ and $\mu(a, b)=\int_{a}^{b} f(x) d x$.
(3) (a) $\mu_{F}(\mathbb{R})=\sup F-\inf F=1$.
(b) Note that F is continuous, therefore $\mu_{F}(a, b)=\mu_{F}(a, b]$. Therefore $\mu_{F}(0,1)=$ $F(1)-F(0)=1-1=0, \mu_{F}(-3,-2)=F(-2)-F(-3)=e^{-2}-e^{-3}$ and $\mu_{F}(-1,2)=F(2)-F(-1)=1-e^{-2}=F(0)-F(-2)=\mu_{F}(-2,0)$.
(c) Note that $\mu_{F}(a, b)=0$ if $b \geq a \geq 0$. Therefore $f(x)=0$ if $x>0$. On the other hand, if $a<b \leq 0, \mu_{F}(a, b)=e^{b}-e^{a}=\int_{a}^{b} e^{x} d x$. Therefore

$$
f(x)= \begin{cases}e^{x} & x<0 \\ 0 & x>0\end{cases}
$$

Note that $f \geq 0$ and $f \in L^{1}(\mathbb{R})$.
(d) By the previous point and characterization of absolutely continuous measure, μ_{F} is absolutely continuous with respect to Lebesgue.

Solution 2.

(1) Let $f \in L^{p}(\mathbb{R}), g \in L^{q}(\mathbb{R})$, where $q=\frac{p}{p-1}$ (and $q=+\infty$ if $p=1$). Then $f g \in L^{1}(\mathbb{R})$ and $\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$.
(2) Note that $\chi_{(0,2)} \in L^{2}(\mathbb{R})$ and $\left\|\chi_{(0,2)}\right\|_{2}=\sqrt{2}$. By assumption $f \chi_{(0,2)} \in L^{2}(\mathbb{R})$, therefore by Holder inequality $f \chi_{(0,2)} \in L^{1}(\mathbb{R})$, that is $f \in L^{1}(0,2)$ and moreover

$$
\left\|f \chi_{(0,2)}\right\|_{1} \leq\left\|f \chi_{(0,2)}\right\|_{2}\left\|\chi_{(0,2)}\right\|_{2}=\left\|f \chi_{(0,2)}\right\|_{2} \sqrt{2}
$$

(3) By definition and monotonicity of the integral
$\|f\|_{1}=\int_{\mathbb{R}}|f(x)| d x \geq \int_{(x \text { s.t. }|f(x)| \geq t)}|f(x)| d x \geq \int_{(x \text { s.t. }|f(x)| \geq t)} t d x=t \mathcal{L}(x$ s.t. $|f(x)| \geq t)$.

