Functional Analysis

Exam- 20 December, 2021- 12.30-14 (90 minutes)

Exercise 1.

- 1. Give the definition of absolutely continuous measure and of singular measure (with respect to the Lebesgue measure in \mathbb{R}).
- 2. State the (Lebesgue-)Radon-Nikodym theorem.
- 3. Consider the functions

$$F(x) = \begin{cases} 0 & x < 0\\ 1 - e^{-x} - xe^{-x} & x \ge 0 \end{cases} \qquad G(x) = \begin{cases} 0 & x < 0\\ \frac{1}{3} & 0 \le x < 1\\ 1 & x \ge 1 \end{cases}$$

and let μ_F , μ_G the Borel measures which have these functions as their cumulative distribution functions (so $\mu_F(a, b] = F(b) - F(a)$ and $\mu_G(a, b] = G(b) - G(a)$).

- (a) Are the measures finite? In case compute $\mu_F(\mathbb{R})$ and $\mu_G(\mathbb{R})$.
- (b) Is the measure μ_F absolutely continuous or is it singular with respect to Lebesgue measure? Find, if it exists, the density associated to this measure.
- (c) Is the measure μ_G absolutely continuous or is it singular with respect to Lebesgue measure? Find, if it exists, the density associated to this measure.

Exercise 2.

- 1. State the orthogonal projection theorem in Hilbert spaces.
- 2. Let M^2 the space of random variables with finite second moment and consider the subspace

 $C = \{ X \in M^2 \mid X \text{ is equal to a constant almost surely} \}.$

Compute the orthogonal space C^{\perp} of C. Compute the orthogonal space $(C^{\perp})^{\perp}$.

- 3. Let $X \in M^2$. Compute the orthogonal projection of X on C^{\perp} .
- 4. Let $Y \in M^2$ a normal random variable (with mean 0 and variance 1). Let $X \in M^2$. Find $\lambda, \mu \in \mathbb{R}$ such that

$$\mathbb{E}[(X - \lambda Y - \mu)^2] = \min_{a,b} \mathbb{E}[(X - aY - b)^2].$$

Compute this minimal value.

Sketch of solutions

Solution 1.

- 1. See notes, Definition 2.38.
- 2. See notes, Theorem 2.32.
- 3. (a) Since $\mu_F(\mathbb{R}) = \sup F \inf F = 1, \mu_G(\mathbb{R}) = \sup G \inf G = 1$, the two measures are finite (and are probability measures).
 - (b) Note that F is continuous, then μ_F is absolutely continuous with respect to Lebesgue. The density of μ_F is a nonnegative function f such that $\mu_F(a, b) = \int_a^b f(x) dx$. Since $\mu_F(a, b) = 0$ for every a, b < 0, we get that f(x) = 0 for all x < 0. Moreover since for x > 0

$$\mu_F(0,x) = 1 - e^{-x} - xe^{-x} = \int_0^x f(t)dt$$

we get, by the fundamental theorem of integral calculus, that

$$f(x) = (1 - e^{-x} - xe^{-x})' = xe^{-x}.$$

Therefore the density of μ_F is $f(x) = xe^{-x}\chi_{(0,+\infty)}(x)$.

- (c) Note that $\mu_G\{0\} = G(0) \lim_{x \to 0^-} G(x) = \frac{1}{3}$ and $\mu_G\{1\} = G(1) \lim_{x \to 1^-} G(x) = 1 \frac{1}{3} = \frac{2}{3}$. Therefore μ_G cannot be absolutely continuous. Moreover, $\mu_G(\mathbb{R} \setminus \{0,1\}) = \mu_G(\mathbb{R}) \mu_G\{0\} \mu_G\{1\} = 0$. Therefore μ_G is singular with respect to the Lebesgue measure (so it has no density) and moreover $\mu_G = \frac{1}{3}\delta_0 + \frac{2}{3}\delta_1$.
- μ_F is a Gamma distribution whereas μ_G is a binomial distribution.

Solution 2.

- 1. See notes, Theorem 4.7.
- 2. C is the space of constant random variables. If $X \in C^{\perp}$ then $\langle X, 1 \rangle = \mathbb{E}(X \cdot 1) = 0$, which means that $\mathbb{E}(X) = 0$. On the other hand if $\mathbb{E}(X) = 0$, then $\langle X, a \rangle = \mathbb{E}(X \cdot a) = 0$ for every constant random variable a. Therefore $C^{\perp} = \{X \in M^2, \mathbb{E}(X) = 0\}.$

Now observe that $C \subseteq (C^{\perp})^{\perp}$ since if $c \in C$, then $\langle X, c \rangle = \mathbb{E}(X \cdot c) = 0$ for every $X \in C^{\perp}$. Let now $Y \in (C^{\perp})^{\perp}$ which is not constant. Then by definition $\langle X, Y \rangle = \mathbb{E}(X \cdot Y) = 0$ for every $X \in C^{\perp}$. Note that since Y is not constant, $Y - \mathbb{E}(Y) \neq 0$ and moreover $Y - \mathbb{E}(Y) \in C^{\perp}$, since $\mathbb{E}(Y - \mathbb{E}(Y)) = 0$. Therefore, $< Y - \mathbb{E}(Y), Y >= \mathbb{E}((Y - \mathbb{E}(Y)) \cdot Y) = 0$. Note that $\mathbb{E}((Y - \mathbb{E}(Y)) \cdot Y) = \mathbb{E}(Y^2) - (\mathbb{E}(Y))^2 = \mathbb{E}(Y - \mathbb{E}(Y))^2 = 0$, which means that $Y \equiv \mathbb{E}(Y)$, so that Y is constant. This implies that $(C^{\perp})^{\perp} = C$.

- 3. By the orthogonal projection theorem, every X can be written uniquely as an element of C (which is the orthogonal projection of X on C) and an element of C^{\perp} (which is the orthogonal projection of X in C^{\perp}). First of all, we compute the orthogonal projection of X on C. A orthonormal basis of C is given by the random variable which is identically equal to 1. Then the orthogonal projection of X on C is $\langle X, 1 \rangle = \mathbb{E}(X \cdot 1) = \mathbb{E}(X)$. Since $X = \mathbb{E}(X) + (X \mathbb{E}(X))$, we get using the orthogonal projection theorem, that $X \mathbb{E}(X)$ is the orthogonal projection of X on C^{\perp} .
- 4. We have to compute the orthogonal projection of X on the space generated by 1, Y, that is on the space $S = \{Z \in M^2 \mid Z = aY + b\}$. Note that $\{1, Y\}$ is a orthonormal basis of S since $\mathbb{E}(Y \cdot 1) = \mathbb{E}(Y) = 0$ and $\mathbb{E}(1^2) = \mathbb{E}(Y^2) = 1$. Therefore the orthogonal projection of X is given by the random variable $Z \in S$ defined as

$$Z = \mathbb{E}(X)1 + \mathbb{E}(XY)Y$$

In particular $\lambda = \mathbb{E}(XY)$ and $\mu = \mathbb{E}(X)$. Finally

$$\begin{split} & \mathbb{E}(X - \mathbb{E}(X)1 - \mathbb{E}(XY)Y)^2 \\ & = \quad \mathbb{E}(X^2) + (\mathbb{E}(X))^2 + (\mathbb{E}(XY))^2 \mathbb{E}(Y^2) - 2(\mathbb{E}(X))^2 - 2(\mathbb{E}(XY))^2 + 2\mathbb{E}(XY)\mathbb{E}(X)\mathbb{E}(Y) \\ & = \quad \mathbb{E}(X^2) - (\mathbb{E}(X))^2 - (\mathbb{E}(XY))^2 = Var(X) - Cov(X,Y)^2. \end{split}$$