
Functional Analysis

Exam- 20 December, 2021- 12.30-14 (90 minutes)

Exercise 1.

1. Give the definition of absolutely continuous measure and of singular measure
(with respect to the Lebesgue measure in R).

2. State the (Lebesgue-)Radon-Nikodym theorem.

3. Consider the functions

F (x) =

{
0 x < 0

1− e−x − xe−x x ≥ 0
G(x) =


0 x < 0
1
3

0 ≤ x < 1

1 x ≥ 1

and let µF , µG the Borel measures which have these functions as their cumulative
distribution functions (so µF (a, b] = F (b)− F (a) and µG(a, b] = G(b)−G(a)).

(a) Are the measures finite? In case compute µF (R) and µG(R).

(b) Is the measure µF absolutely continuous or is it singular with respect to
Lebesgue measure? Find, if it exists, the density associated to this measure.

(c) Is the measure µG absolutely continuous or is it singular with respect to
Lebesgue measure? Find, if it exists, the density associated to this measure.

Exercise 2.

1. State the orthogonal projection theorem in Hilbert spaces.

2. Let M2 the space of random variables with finite second moment and consider
the subspace

C = {X ∈M2 |X is equal to a constant almost surely}.

Compute the orthogonal space C⊥ of C. Compute the orthogonal space (C⊥)⊥.

3. Let X ∈M2. Compute the orthogonal projection of X on C⊥.

4. Let Y ∈ M2 a normal random variable (with mean 0 and variance 1). Let
X ∈M2. Find λ, µ ∈ R such that

E[(X − λY − µ)2] = min
a,b

E[(X − aY − b)2].

Compute this minimal value.
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Sketch of solutions

Solution 1.

1. See notes, Definition 2.38.

2. See notes, Theorem 2.32.

3. (a) Since µF (R) = supF − inf F = 1, µG(R) = supG − inf G = 1, the two
measures are finite (and are probability measures).

(b) Note that F is continuous, then µF is absolutely continuous with respect to
Lebesgue. The density of µF is a nonnegative function f such that µF (a, b) =´ b
a
f(x)dx. Since µF (a, b) = 0 for every a, b < 0, we get that f(x) = 0 for

all x < 0. Moreover since for x > 0

µF (0, x) = 1− e−x − xe−x =

ˆ x

0

f(t)dt

we get, by the fundamental theorem of integral calculus, that

f(x) = (1− e−x − xe−x)′ = xe−x.

Therefore the density of µF is f(x) = xe−xχ(0,+∞)(x).

(c) Note that µG{0} = G(0)−limx→0− G(x) = 1
3

and µG{1} = G(1)−limx→1− G(x) =
1 − 1

3
= 2

3
. Therefore µG cannot be absolutely continuous. Moreover,

µG(R \ {0, 1}) = µG(R) − µG{0} − µG{1} = 0. Therefore µG is singular
with respect to the Lebesgue measure (so it has no density) and moreover
µG = 1

3
δ0 + 2

3
δ1.

µF is a Gamma distribution whereas µG is a binomial distribution.

Solution 2.

1. See notes, Theorem 4.7.

2. C is the space of constant random variables. If X ∈ C⊥ then < X, 1 >=
E(X · 1) = 0, which means that E(X) = 0. On the other hand if E(X) = 0,
then < X, a >= E(X · a) = 0 for every constant random variable a. Therefore
C⊥ = {X ∈M2,E(X) = 0}.
Now observe that C ⊆ (C⊥)⊥ since if c ∈ C, then < X, c >= E(X · c) = 0 for
every X ∈ C⊥. Let now Y ∈ (C⊥)⊥ which is not constant. Then by definition
< X, Y >= E(X · Y ) = 0 for every X ∈ C⊥. Note that since Y is not constant,
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Y −E(Y ) 6= 0 and moreover Y −E(Y ) ∈ C⊥, since E(Y −E(Y )) = 0. Therefore,
< Y − E(Y ), Y >= E((Y − E(Y )) · Y ) = 0. Note that E((Y − E(Y )) · Y ) =
E(Y 2) − (E(Y ))2 = E(Y − E(Y ))2 = 0, which means that Y ≡ E(Y ), so that Y
is constant. This implies that (C⊥)⊥ = C.

3. By the orthogonal projection theorem, every X can be written uniquely as an
element of C (which is the orthogonal projection of X on C) and an element of
C⊥ (which is the orthogonal projection of X in C⊥). First of all, we compute
the orthogonal projection of X on C. A orthonormal basis of C is given by the
random variable which is identically equal to 1. Then the orthogonal projection
of X on C is < X, 1 >= E(X · 1) = E(X). Since X = E(X) + (X − E(X)), we
get using the orthogonal projection theorem, that X − E(X) is the orthogonal
projection of X on C⊥.

4. We have to compute the orthogonal projection of X on the space generated by
1, Y , that is on the space S = {Z ∈ M2 | Z = aY + b}. Note that {1, Y } is
a orthonormal basis of S since E(Y · 1) = E(Y ) = 0 and E(12) = E(Y 2) = 1.
Therefore the orthogonal projection of X is given by the random variable Z ∈ S
defined as

Z = E(X)1 + E(XY )Y.

In particular λ = E(XY ) and µ = E(X). Finally

E(X − E(X)1− E(XY )Y )2

= E(X2) + (E(X))2 + (E(XY ))2E(Y 2)− 2(E(X))2 − 2(E(XY ))2 + 2E(XY )E(X)E(Y )

= E(X2)− (E(X))2 − (E(XY ))2 = V ar(X)− Cov(X, Y )2.
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